Category Archives: Education

NASA Space Place – Solar Eclipse Provides Coronal Glimpse

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in February, 2017.

By Marcus Woo

2013february2_spaceplaceOn August 21, 2017, North Americans will enjoy a rare treat: The first total solar eclipse visible from the continent since 1979. The sky will darken and the temperature will drop, in one of the most dramatic cosmic events on Earth. It could be a once-in-a-lifetime show indeed. But it will also be an opportunity to do some science.

Only during an eclipse, when the moon blocks the light from the sun’s surface, does the sun’s corona fully reveal itself. The corona is the hot and wispy atmosphere of the sun, extending far beyond the solar disk. But it’s relatively dim, merely as bright as the full moon at night. The glaring sun, about a million times brighter, renders the corona invisible.

“The beauty of eclipse observations is that they are, at present, the only opportunity where one can observe the corona [in visible light] starting from the solar surface out to several solar radii,” says Shadia Habbal, an astronomer at the University of Hawaii. To study the corona, she’s traveled the world having experienced 14 total eclipses (she missed only five due to weather). This summer, she and her team will set up identical imaging systems and spectrometers at five locations along the path of totality, collecting data that’s normally impossible to get.

Ground-based coronagraphs, instruments designed to study the corona by blocking the sun, can’t view the full extent of the corona. Solar space-based telescopes don’t have the spectrographs needed to measure how the temperatures vary throughout the corona. These temperature variations show how the sun’s chemical composition is distributed—crucial information for solving one of long-standing mysteries about the corona: how it gets so hot.

While the sun’s surface is ~9980 Fahrenheit (~5800 Kelvin), the corona can reach several millions of degrees Fahrenheit. Researchers have proposed many explanations involving magneto-acoustic waves and the dissipation of magnetic fields, but none can account for the wide-ranging temperature distribution in the corona, Habbal says.

You too can contribute to science through one of several citizen science projects. For example, you can also help study the corona through the Citizen CATE experiment; help produce a high definition, time-expanded video of the eclipse; use your ham radio to probe how an eclipse affects the propagation of radio waves in the ionosphere; or even observe how wildlife responds to such a unique event.

Otherwise, Habbal still encourages everyone to experience the eclipse. Never look directly at the sun, of course (find more safety guidelines here: But during the approximately 2.5 minutes of totality, you may remove your safety glasses and watch the eclipse directly—only then can you see the glorious corona. So enjoy the show. The next one visible from North America won’t be until 2024.

For more information about the upcoming eclipse, please see:

NASA Eclipse citizen science page:

NASA Eclipse safety guidelines:

Want to teach kids about eclipses? Go to the NASA Space Place and see our article on solar and lunar eclipses!

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Caption: Illustration showing the United States during the total solar eclipse of August 21, 2017, with the umbra (black oval), penumbra (concentric shaded ovals), and path of totality (red) through or very near several major cities. Credit: Goddard Science Visualization Studio, NASA

About NASA Space Place

With articles, activities, crafts, games, and lesson plans, NASA Space Place encourages everyone to get excited about science and technology. Visit (facebook|twitter) to explore space and Earth science!

CNYO Brochure – An Observational Astronomy Facts And Figures Cheat Sheet

To cut to the downloading chase: Astronomy Facts And Figures Cheat Sheet V6.pdf

Greetings, fellow astrophiles!

Those who’ve ever run an observing session have inevitably faced the most daunting of amateur astronomy outreach questions:

“Woah. How far away is that?!”

In the interest of having a rapid response to that and similar questions, the posted cheat sheet combines as much of the usual information that observers and attendees might want to know as can be fit in not-too-small font into groupings that fit on single pages (10, total).

An important word on the facts: To the very best of ability, all of the information has been checked and double-checked against available data online. To that end, all of the data as presented can be directly attributed to the following websites as of their content on 1 January 2017:

* – extra thanks to Fred Espenak for use permissions

* – extra thanks to Fred Espenak for use permissions





And, of course:







The Observational Astronomy Cheat Sheet contains the following:

Page 1: The only two figures in the document, including the famous “finger how-to” for measuring distances in the night sky and a figure describing right ascension and declination (with values for many objects given in the tables).

Page 2: Moons And Planets – All of the standard information (and descriptions below) about the relative places of planets in the Solar System (distances, masses, temperatures, distances from Sun), then an extra column for our Moon.

Page 3: Best Meteor Showers – All of the categorized Class I, II, and III Meteor Showers throughout the year, including approximate peak dates, times, and directions.

Page 4: Marginal Meteor Showers – All of the categorized Class IV Meteor Showers (these are surely poor meteor showers for observing, but that fact that we’ve catalogued them there tells you how exhaustive astronomers have been in keeping track of periodicities in our day/nighttime sky).

Page 5: Winter And Spring Messier Objects – including abbreviations, NGC labels, types, distances (as best we know them), and Common Names.

Page 6: Summer And Autumn Messier Objects – including abbreviations, NGC labels, types, distances (as best we know them), and Common Names.

Page 7: Northern and Zodiacal Constellations – including family, origin, brightest star, and positional information.

Page 8: Southern Constellations – including family, origin, brightest star, and positional information.

Page 9: Top Asteroids – the best and brightest (and best identified), including distances, discovery information, and magnitudes (as available).

Page 10: Stars – the Top 50 brightest (with our Sun at its rightful position as #1), including constellation, magnitudes, distances, and mass and positional information.

And, without further ado…

Download Astronomy Facts And Figures Cheat Sheet V6.pdf

“Upstate NY Stargazing In February” Article Posted To And

Greetings, fellow astrophiles!

The latest article in the Upstate NY Stargazing series, “Upstate NY Stargazing in February: Lunar eclipse, Kopernik star party, ‘Dog Nights of Winter’,” has just been posted to and

Direct Link:…_star_party_dog_nights_o.html

Direct Link:…_star_party_dog_nights_o.html

Readers this month are first treated to a great pic of the Moon by CNYO’s own Larry Slosberg, followed by a brief discussion of the upcoming penumbral lunar eclipse on February 10th – with a reminder that Bob Piekiel is hosting an observing session for it at Baltimore Woods that night from 6:30 to 8:30 p.m.

Caption: The Moon on Jan. 5, 2017. (Photograph courtesy of by Larry Slosberg).

Also included is a reminder that the Kopernik Winter Star Party is this coming February 18th!

To the discussion of the eclipse and some pleasant Moon-planet alignments this month, the constellation focus is on Canis Major, featuring the brightest star, double or otherwise, in our nighttime sky – Sirius.

Caption: Canis Major and labels, including the location of the open star cluster M41. Image made with Stellarium. Click for a larger view.