Category Archives: Nasa Night Sky Notes

NASA Night Sky Notes: Spot The Young Stars Of The Hyades And Pleiades

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. Your tax dollars help promote science! The following article was provided for reprinting by the Night Sky Network in January, 2020.

By David Prosper

Orion is the last of a trio of striking star patterns to rise during the late fall and early winter months, preceded by the diminutive Pleiades and larger Hyades in Taurus. All three are easily spotted rising in the east in early January evenings, and are textbook examples of stars in different stages of development.

As discussed in last month’s Notes, the famous Orion Nebula (M42), found in Orion’s “Sword,” is a celestial nursery full of newly-born “baby stars” and still-incubating “protostars,” surrounded by the gas from which they were born. Next to Orion we find the Hyades, in Taurus, with their distinctive “V’ shape. The Hyades are young but mature stars, hundreds of millions of years old and widely dispersed. Imagine them as “young adult” stars venturing out from their hometown into their new galactic apartments. Bright orange Aldebaran stands out in this group, but is not actually a member; it just happens to be in between us and the Hyades. Traveling from Orion to the Hyades we then find the small, almost dipper-shaped Pleiades star cluster (M45). These are “teenage stars,” younger than the Hyades, but older than the newborn stars of the Orion Nebula. These bright young stars are still relatively close together, but have dispersed their birth cocoon of stellar gas, like teenagers venturing around the neighborhood with friends and wearing their own clothes, but still remaining close to home – for now. Astronomers have studied this trio in great detail in order to learn more about stellar evolution.

Figuring the exact distance of the Pleiades from Earth is an interesting problem in astrometry, the study of the exact positions of stars in space. Knowing their exact distance away is a necessary step in determining many other facts about the Pleiades. The European Space Agency’s Hipparcos satellite determined their distance to about 392 light years away, around 43 light years closer than previous estimates. However, subsequent measurements by NASA’s Hubble Space Telescope indicated a distance of 440 light years, much closer to pre-Hipparcos estimates. Then, using a powerful technique called Very Long Baseline Interferometry (VLBI), which combines the power of radio telescopes from around the world, the distance of the Pleiades was calculated to 443 light years. The ESA’s Gaia satellite, a successor to Hipparcos, recently released its first two sets of data, which among other findings show the distance close to the values found by Hubble and VLBI, possibly settling the long-running “Pleiades Controversy” and helping firm up the foundation for follow-up studies about the nature of the stars of the Pleiades.

You can learn more about the Pleiades in the Universe Discovery Guide at bit.ly/UDGMarch , and find out about missions helping to measure our universe at nasa.gov.

Locate Orion rising in the east after sunset to find the Orion Nebula in the “Sword,” below the famous “Belt” of three bright stars. Then, look above Orion to find both the Hyades and the Pleiades. Binoculars will bring out lots of extra stars and details in all three objects, but you can even spot them with your unaided eye!
Close-up of the Pleiades, with the field of view of Hubble’s Fine Guidance Sensors overlaid in the top left, which helped refine the distance to the cluster. The circumference of the field of view of these sensors is roughly the size of the full Moon. (Credit: NASA, ESA and AURA/Caltech)

The Night Sky Network program supports astronomy clubs across the USA dedicated to astronomy outreach. Visit nightsky.jpl.nasa.gov to find local clubs, events, and more!

NASA Night Sky Notes: The Orion Nebula – Window Into A Stellar Nursery

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. Your tax dollars help promote science! The following article was provided for reprinting by the Night Sky Network in December, 2019.

By David Prosper

Winter begins in December for observers in the Northern Hemisphere, bringing cold nights and the return of one of the most famous constellations to our early evening skies: Orion the Hunter!

Orion is a striking pattern of stars and is one of the few constellations whose pattern is repeated almost unchanged in the star stories of cultures around the world. Below the three bright stars of Orion’s Belt lies his sword, where you can find the famous Orion Nebula, also known as M42. The nebula is visible to our unaided eyes in even moderately light-polluted skies as a fuzzy “star” in the middle of Orion’s Sword. M42 is about 20 light years across, which helps with its visibility since it’s roughly 1,344 light years away! Baby stars, including the famous “Trapezium” cluster, are found inside the nebula’s whirling gas clouds. These gas clouds also hide “protostars” from view: objects in the process of becoming stars, but that have not yet achieved fusion at their core.

The Orion Nebula is a small window into a vastly larger area of star formation centered around the constellation of Orion itself. NASA’s Great Observatories, space telescopes like Hubble, Spitzer, Compton, and Chandra, studied this area in wavelengths we can’t see with our earthbound eyes, revealing the entire constellation alight with star birth, not just the comparatively tiny area of the nebula. Why then can we only see the nebula? M42 contains hot young stars whose stellar winds blew away their cocoons of gas after their “birth,” the moment when they begin to fuse hydrogen into helium. Those gas clouds, which block visible light, were cleared away just enough to give us a peek inside at these young stars. The rest of the complex remains hidden to human eyes, but not to advanced space-based telescopes.

We put telescopes in orbit to get above the interference of our atmosphere, which absorbs many wavelengths of light. Infrared space telescopes, such as Spitzer and the upcoming James Webb Space Telescope, detect longer wavelengths of light that allow them to see through the dust clouds in Orion, revealing hidden stars and cloud structures. It’s similar to the infrared goggles firefighters wear to see through smoke from burning buildings and wildfires.

Learn more about how astronomers combine observations made at different wavelengths with the Night Sky Network activity, ‘The Universe in a Different Light,” downloadable from bit.ly/different-light-nsn. You can find more stunning science and images from NASA’s Great Observatories at nasa.gov.

This image from NASA’s Spitzer missions shows Orion in a different light – quite literally! Note the small outline of the Orion Nebula region in the visible light image on the left, versus the massive amount of activity shown in the infrared image of the same region on the right. Image Credit: NASA/JPL-Caltech/IRAS /H. McCallon. From bit.ly/SpitzerOrion

The Night Sky Network program supports astronomy clubs across the USA dedicated to astronomy outreach. Visit nightsky.jpl.nasa.gov to find local clubs, events, and more!

NASA Night Sky Notes: The Messenger Crosses The Sun – Mercury Transit 2019

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. Your tax dollars help promote science! The following article was provided for reprinting by the Night Sky Network in November, 2019.

By David Prosper

Did you know that there are two other objects in our skies that have phases like the Moon? They’re the inner planets, found between Earth and the Sun: Mercury and Venus. You can see their phases if you observe them through a telescope. Like our Moon, you can’t see the planets in their “new” phase, unless they are lined up perfectly between us Earthlings and the Sun. In the case of the Moon, this alignment results in a solar eclipse; in the case of Mercury and Venus, this results in a transit, where the small disc of the planet travels across the face of the Sun. Skywatchers are in for a treat this month, as Mercury transits the Sun the morning of November 11!

You may have seen the transit of Venus in 2012; you may have even watched it through eclipse glasses! However, this time you’ll need a solar telescope to see anything, since eclipse glasses will only reveal the Sun’s blank face. Why is that? Mercury is the smallest planet in our solar system, and closer to the Sun (and further away from Earth) during its transit than Venus was in its 2012 transit. This makes Mercury’s disc too small to see without the extra power of a telescope. Make absolutely certain that you view the transit via a telescope equipped with a safe solar filter or projection setup. Do NOT combine binoculars with your eclipse glasses; this will instantly burn a hole through the glasses – and your eyes! While most people don’t have solar telescopes handy, many astronomy clubs do! Look for clubs hosting Mercury transit observing events near you at bit.ly/findnsn (USA) or at bit.ly/awbtransit (worldwide).

What a fun opportunity to see another planet during the day! This transit is expected to last over five hours. Folks on the East Coast will be able to watch the entre transit, weather permitting, from approximately 7:35 am EST until around approximately 1:04 pm EST. Folks located in the middle of North America to the west coast will see the transit already in progress at sunrise. The transit takes hours, so if your weather is cloudy, don’t despair; there will be plenty of time for skies to clear! You can find timing details and charts via eclipse guru Fred Espenak’s website: bit.ly/mercurytransit2019

Mercury’s orbit is small and swift, and so its position in our skies quickly changes; that’s why it was named after the fleet-footed messenger god of Roman mythology. In fact, if you have a clear view of the eastern horizon, you’ll be able to catch Mercury again this month! Look for it before dawn during the last week of November, just above the eastern horizon and below red Mars. Wake up early the morning of November 24th to see Mars, the Moon, and Mercury form a loose triangle right before sunrise.

Discover more about Mercury and the rest of our solar system at nasa.gov

Photo of the May 9, 2016 transit of Mercury. Mercury is the small dot on the center right. Note how tiny it is, even compared to the small sunspot on the center left. Credit: Dave Huntz
This photo from the same 2016 transit event shows Mercury a bit larger, as it should; it was taken at a higher magnification through a large 16 inch telescope! Credit: J. A. Blackwell

The Night Sky Network program supports astronomy clubs across the USA dedicated to astronomy outreach. Visit nightsky.jpl.nasa.gov to find local clubs, events, and more!