Category Archives: Nasa Space Place

NASA Space Place Digest For March, 2018

2013february2_spaceplace
Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science!

The following four articles were sent to Space Place partners and subscribers, provided in a format that offers discussions of topics of astronomical interest. As these posts are graphics-intensive, only the intro snippet is provided here with links to the full article provided for each.

All About Exoplanets

All of the planets in our solar system orbit around the sun. Planets that orbit around other stars are called exoplanets. Exoplanets are very hard to see directly with telescopes. They are hidden by the bright glare of the stars they orbit.

An artist’s representation of Kepler-11, a small, cool star around which six planets orbit. Credit: NASA/Tim Pyle

So, astronomers use other ways to detect and study these distant planets. They search for exoplanets by looking at the effects these planets have on the stars they orbit.

Read the full article…

How Do We Weigh Planets?

In real life, we can’t pick up a planet and put it on a scale. However, scientists do have ways to figure out how much a planet weighs. They can calculate how hard the planet pulls on other things. The heavier the planet, the stronger it tugs on nearby objects—like moons or visiting spacecraft. That tug is what we call gravitational pull.

Your weight is different on other planets due to gravity. However, your mass is the same everywhere!

Read the full article…

What Is a Volcano?

A volcano is an opening on the surface of a planet or moon that allows material warmer than its surroundings to escape from its interior. When this material escapes, it causes an eruption. An eruption can be explosive, sending material high into the sky. Or it can be calmer, with gentle flows of material.

Lava fountain at Kīlauea Volcano, Hawai`i. Credit: J.D Griggs, USGS

These volcanic areas usually form mountains built from the many layers of rock, ash or other material that collect around them. Volcanoes can be active, dormant, or extinct. Active volcanoes are volcanoes that have had recent eruptions or are expected to have eruptions in the near future. Dormant volcanoes no longer produce eruptions, but might again sometime in the future. Extinct volcanoes will likely never erupt again.

Read the full article…

What’s It Like Inside Jupiter?

It’s really hot inside Jupiter! No one knows exactly how hot, but scientists think it could be about 43,000°F (24,000°C) near Jupiter’s center, or core.
So, astronomers use other ways to detect and study these distant planets. They search for exoplanets by looking at the effects these planets have on the stars they orbit.

The reddish brown and white stripes of Jupiter are made up of swirling clouds. The well-known Red Spot is a huge, long-lasting storm. Image credit: NASA/JPL/Space Science Institute

Jupiter is made up almost entirely of hydrogen and helium. On the surface of Jupiter–and on Earth–those elements are gases. However inside Jupiter, hydrogen can be a liquid, or even a kind of metal.

These changes happen because of the tremendous temperatures and pressures found at the core.
Read the full article…

About NASA Space Place

With articles, activities, crafts, games, and lesson plans, NASA Space Place encourages everyone to get excited about science and technology. Visit spaceplace.nasa.gov (facebook|twitter) to explore space and Earth science!

NASA Space Place – Sixty Years Of Observing Our Earth

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in January, 2018.

By Teagan Wall

2013february2_spaceplaceSatellites are a part of our everyday life. We use global positioning system (GPS) satellites to help us find directions. Satellite television and telephones bring us entertainment, and they connect people all over the world. Weather satellites help us create forecasts, and if there’s a disaster-such as a hurricane or a large fire-they can help track what’s happening. Then, communication satellites can help us warn people in harm’s way.

There are many different types of satellites. Some are smaller than a shoebox, while others are bigger than a school bus. In all, there are more than 1,000 satellites orbiting Earth. With that many always around, it can be easy to take them for granted. However, we haven’t always had these helpful eyes in the sky.

The United States launched its first satellite on Jan. 31, 1958. It was called Explorer 1, and it weighed in at only about 30 pounds. This little satellite carried America’s first scientific instruments into space: temperature sensors, a microphone, radiation detectors and more.

Explorer 1 sent back data for four months, but remained in orbit for more than 10 years. This small, relatively simple satellite kicked off the American space age. Now, just 60 years later, we depend on satellites every day. Through these satellites, scientists have learned all sorts of things about our planet.

For example, we can now use satellites to measure the height of the land and sea with instruments called altimeters. Altimeters bounce a microwave or laser pulse off Earth and measure how long it takes to come back. Since the speed of light is known very accurately, scientists can use that measurement to calculate the height of a mountain, for example, or the changing levels of Earth’s seas.

Satellites also help us to study Earth’s atmosphere. The atmosphere is made up of layers of gases that surround Earth. Before satellites, we had very little information about these layers. However, with satellites’ view from space, NASA scientists can study how the atmosphere’s layers interact with light. This tells us which gases are in the air and how much of each gas can be found in the atmosphere. Satellites also help us learn about the clouds and small particles in the atmosphere, too.

When there’s an earthquake, we can use radar in satellites to figure out how much Earth has moved during a quake. In fact, satellites allow NASA scientists to observe all kinds of changes in Earth over months, years or even decades.

Satellites have also allowed us-for the first time in civilization-to have pictures of our home planet from space. Earth is big, so to take a picture of the whole thing, you need to be far away. Apollo 17 astronauts took the first photo of the whole Earth in 1972. Today, we’re able to capture new pictures of our planet many times every day.

Today, many satellites are buzzing around Earth, and each one plays an important part in how we understand our planet and live life here. These satellite explorers are possible because of what we learned from our first voyage into space with Explorer 1-and the decades of hard work and scientific advances since then.

To learn more about satellites, including where they go when they die, check out NASA Space Place: https://spaceplace.nasa.gov/spacecraft-graveyard.

Caption: This photo shows the launch of Explorer 1 from Cape Canaveral, Fla., on Jan. 31, 1958. Explorer 1 is the small section on top of the large Jupiter-C rocket that blasted it into orbit. With the launch of Explorer 1, the United States officially entered the space age. Image credit: NASA

About NASA Space Place

With articles, activities, crafts, games, and lesson plans, NASA Space Place encourages everyone to get excited about science and technology. Visit spaceplace.nasa.gov (facebook|twitter) to explore space and Earth science!

NASA Space Place – Snowy Worlds Beyond Earth

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in December, 2017.

The Space Place article format has changed recently, including more embedded images. To simplify the posting process, a PDF version of the article is provided below, with a snippet of the article reproduced below it.

Download as PDF: Snowy Worlds Beyond Earth

By Linda Hermans-Killiam

2013february2_spaceplace

There are many places on Earth where it snows, but did you know it snows on other worlds, too? Here are just a few of the places where you might find snow beyond Earth:

A Moon of Saturn: Enceladus

Saturn’s moon, Enceladus, has geysers that shoot water vapor out into space. There it freezes and falls back to the surface as snow. Some of the ice also escapes Enceladus to become part of Saturn’s rings. The water vapor comes from a heated ocean which lies beneath the moon’s icy surface. (Jupiter’s moon Europa is also an icy world with a liquid ocean below the frozen surface.) All of this ice and snow make Enceladus one of the brightest objects in our solar system.

Caption: Enceladus as viewed from NASA’s Cassini spacecraft. Credit: NASA

Want to learn more about weather on other planets? Check out NASA Space Place: spaceplace.nasa.gov/planet-weather

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

About NASA Space Place

With articles, activities, crafts, games, and lesson plans, NASA Space Place encourages everyone to get excited about science and technology. Visit spaceplace.nasa.gov (facebook|twitter) to explore space and Earth science!