Category Archives: Nasa Space Place

NASA Space Place – Cassini Says Goodbye

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in September, 2017.

By Teagan Wall

2013february2_spaceplaceOn September 15th, the Cassini spacecraft will have its final mission. It will dive into the planet Saturn, gathering information and sending it back to Earth for as long as possible. As it dives, it will burn up in the atmosphere, much like a meteor. Cassini’s original mission was supposed to last four years, but it has now been orbiting Saturn for more than 13 years!

The spacecraft has seen and discovered so many things in that time. In 2010, Cassini saw a massive storm in Saturn’s northern hemisphere. During this storm, scientists learned that Saturn’s atmosphere has water vapor, which rose to the surface. Cassini also looked at the giant storm at Saturn’s north pole. This storm is shaped like a hexagon. NASA used pictures and other data from Cassini to learn how the storm got its six-sided shape.

Cassini also looked at some of Saturn’s moons, such as Titan and Enceladus. Titan is Saturn’s largest moon. Cassini carried a lander to Titan. The lander, called Huygens, parachuted from Cassini down to the surface of the moon. It turns out, Titan is quite an exciting place! It has seas, rivers, lakes and rain. This means that in some ways, Titan’s landscape looks a bit like Earth. However, its seas and rivers aren’t made of water—they’re made of a chemical called methane.

Cassini also helped us learn that Saturn’s moon Enceladus is covered in ice. Underneath the ice is a giant liquid ocean that covers the whole moon. Tall geysers from this ocean spray out of cracks in the ice and into space, like a giant sneeze. Cassini flew through one of these geysers. We learned that the ocean is made of very salty water, along with some of the chemicals that living things need.

If there is life on Enceladus, NASA scientists don’t want life from Earth getting mixed in. Tiny living things may have hitched a ride on Cassini when it left Earth. If these germs are still alive, and they land on Enceladus, they could grow and spread. We want to protect Enceladus, so that if we find life, we can be sure it didn’t come from Earth. This idea is called planetary protection.

Scientists worry that when Cassini runs out of fuel, it could crash into Titan or Enceladus. So years ago, they came up with a plan to prevent that from happening. Cassini will complete its exploration by diving into Saturn—on purpose. The spacecraft will burn up and become part of the planet it explored. During its final plunge, Cassini will tell us more about Saturn’s atmosphere, and protect the moons at the same time. What an exciting way to say goodbye!

To learn more about Saturn, check out NASA Space Place: https://spaceplace.nasa.gov/all-about-saturn

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Caption: This image of the hexagonal storm on Saturn’s north pole was taken by Cassini in 2013. Image credit: NASA/JPL-Caltech/Space Science Institute

About NASA Space Place

With articles, activities, crafts, games, and lesson plans, NASA Space Place encourages everyone to get excited about science and technology. Visit spaceplace.nasa.gov (facebook|twitter) to explore space and Earth science!

NASA Space Place – Twenty Years Ago on Mars…

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in July, 2017.

By Linda Hermans-Killiam

2013february2_spaceplaceOn July 4, 1997, NASA’s Mars Pathfinder landed on the surface of Mars. It landed in an ancient flood plain that is now dry and covered with rocks. Pathfinder’s mission was to study the Martian climate, atmosphere and geology. At the same time, the mission was also testing lots of new technologies.

For example, the Pathfinder mission tried a brand-new way of landing on Mars. After speeding into the Martian atmosphere, Pathfinder used a parachute to slow down and drift toward the surface of the Red Planet. Before landing, Pathfinder inflated huge airbags around itself. The spacecraft released its parachute and dropped to the ground, bouncing on its airbags about 15 times. After Pathfinder came to a stop, the airbags deflated.

Before Pathfinder, spacecraft had to use lots of fuel to slow down for a safe landing on another planet. Pathfinder’s airbags allowed engineers to use and store less fuel for the landing. This made the mission less expensive. After seeing the successful Pathfinder landing, future missions used this airbag technique, too!

Pathfinder had two parts: a lander that stayed in one place, and a wheeled rover that could move around. The Pathfinder lander had special instruments to study Martian weather. These instruments measured air temperature, pressure and winds. The measurements helped us better understand the climate of Mars.

The lander also had a camera for taking images of the Martian landscape. The lander sent back more than 16,000 pictures of Mars. Its last signal was sent to Earth on Sept. 27, 1997. The Pathfinder lander was renamed the Carl Sagan Memorial Station. Carl Sagan was a well-known astronomer and science educator.

Pathfinder also carried the very first rover to Mars. This remotely-controlled rover was about the size of a microwave oven and was called Sojourner. It was named to honor Sojourner Truth, who fought for African-American and women’s rights. Two days after Pathfinder landed, Sojourner rolled onto the surface of Mars. Sojourner gathered data on Martian rocks and soil. The rover also carried cameras. In the three months that Sojourner operated on Mars, the rover took more than 550 photos!

Pathfinder helped us learn how to better design missions to Mars. It gave us valuable new information on the Martian climate and surface. Together, these things helped lay the groundwork for future missions to Mars.

Learn more about the Sojourner rover at the NASA Space Place: https://spaceplace.nasa.gov/mars-sojourner

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Caption: The Mars Pathfinder lander took this photo of its small rover, called Sojourner. Here, Sojourner is investigating a rock on Mars. Image credit: NASA/JPL-Caltech

About NASA Space Place

With articles, activities, crafts, games, and lesson plans, NASA Space Place encourages everyone to get excited about science and technology. Visit spaceplace.nasa.gov (facebook|twitter) to explore space and Earth science!

NASA Space Place – The Shape Of The Solar System

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in June, 2017.

By Marcus Woo

2013february2_spaceplaceWhen Stamatios (Tom) Krimigis was selected for the Voyager mission in 1971, he became the team’s youngest principal investigator of an instrument, responsible for the Low Energy Charged Particles (LECP) instrument. It would measure the ions coursing around and between the planets, as well as those beyond. Little did he know, though, that more than 40 years later, both Voyager 1 and 2 still would be speeding through space, continuing to literally reshape our view of the solar system.

The solar system is enclosed in a vast bubble, carved out by the solar wind blowing against the gas of the interstellar medium. For more than half a century, scientists thought that as the sun moved through the galaxy, the interstellar medium would push back on the heliosphere, elongating the bubble and giving it a pointy, comet-like tail similar to the magnetospheres—bubbles formed by magnetic fields—surrounding Earth and most of the other planets

“We in the heliophysics community have lived with this picture for 55 years,” said Krimigis, of The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland. “And we did that because we didn’t have any data. It was all theory.”

But now, he and his colleagues have the data. New measurements from Voyager and the Cassini spacecraft suggest that the bubble isn’t pointy after all. It’s spherical.

Their analysis relies on measuring high-speed particles from the heliosphere boundary. There, the heated ions from the solar wind can strike neutral atoms coming from the interstellar medium and snatch away an electron. Those ions become neutral atoms, and ricochet back toward the sun and the planets, uninhibited by the interplanetary magnetic field.

Voyager is now at the edge of the heliosphere, where its LECP instrument can detect those solar-wind ions. The researchers found that the number of measured ions rise and fall with increased and decreased solar activity, matching the 11-year solar cycle, showing that the particles are indeed originating from the sun.

Meanwhile, Cassini, which launched 20 years after Voyager in 1997, has been measuring those neutral atoms bouncing back, using another instrument led by Krimigis, the Magnetosphere Imaging Instrument (MIMI). Between 2003 and 2014, the number of measured atoms soared and dropped in the same way as the ions, revealing that the latter begat the former. The neutral atoms must therefore come from the edge of the heliosphere.

If the heliosphere were comet-shaped, atoms from the tail would take longer to arrive at MIMI than those from the head. But the measurements from MIMI, which can detect incoming atoms from all directions, were the same everywhere. This suggests the distance to the heliosphere is the same every which way. The heliosphere, then, must be round, upending most scientists’ prior assumptions.

It’s a discovery more than four decades in the making. As Cassini ends its mission this year, the Voyager spacecraft will continue blazing through interstellar space, their remarkable longevity having been essential for revealing the heliosphere’s shape.

“Without them,” Krimigis says, “we wouldn’t be able to do any of this.”

To teach kids about the Voyager mission, visit the NASA Space Place: spaceplace.nasa.gov/voyager-to-planets

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Caption: New data from NASA’s Cassini and Voyager show that the heliosphere — the bubble of the sun’s magnetic influence that surrounds the solar system — may be much more compact and rounded than previously thought. The image on the left shows a compact model of the heliosphere, supported by this latest data, while the image on the right shows an alternate model with an extended tail. The main difference is the new model’s lack of a trailing, comet-like tail on one side of the heliosphere. This tail is shown in the old model in light blue. Image credits: Dialynas, et al. (left); NASA (right)

About NASA Space Place

With articles, activities, crafts, games, and lesson plans, NASA Space Place encourages everyone to get excited about science and technology. Visit spaceplace.nasa.gov (facebook|twitter) to explore space and Earth science!