CNYO Brochure – A Guide For Solar Observing

Greetings fellow astrophiles!

In preparation for upcoming 2013 lecture and observing sessions, we have put together instructional brochures to help introduce the Night Sky to attendees. The third of these, entitled “A Guide For Solar Observing,” addresses our solar observing sessions and is provided below in PDF format. This brochure will be available at our combined lecture/observing sessions, but feel free to bring your own paper copy (or the PDF on a tablet – but have red acetate ready!).

Download: A Guide For Solar Observing (v6)

NOTE: These brochures are made better by your input. If you find a problem, have a question, or have a suggestion (bearing in mind these are being kept to one two-sided piece of paper), please contact CNYO at info@cnyo.org.

NOTE 2: We’d like to thank the great solar photographer Alfred Tan for the use of his solar image in this brochure. For a regular feed of his stellar (pun intended) solar views from Singapore, we encourage you to subscribe to his twitter feed at: twitter.com/yltansg.

2013may1_htnsm_pg1

2013may1_htnsm_pg1

A Guide For Solar Observing

Solar Safety: Read Me First!

“NEVER Look At The Sun Through ANY Eyepiece Without Protection!”

Pre-Observing Observing Tips

“The Sun is a blindingly bright object all by itself – and your observing session has you constantly looking in its direction!”

Sun Cross Section – 697,000 km Radius

“Radiative Zone: 348,000 km thick, energy from the core is passed through as photons (light) – thousands of years for light to pass through it from the core!”

The Solar System To Scale

“The solar diameter in “planets” is listed.”

More Information About The Sun

“The Sun is the reason why we’re here!”

And Just Why Is The Sky Blue?

“At sunrise and sunset, most of the blue light has been scattered by air molecules, so more of the Sun’s longer wavelength light (red and orange) makes it to our eyes (“R”).”

What You’ll Observe On The Sun

“The savvy (or lucky) observer may see a plane (1), a satellite, a planet (“transit” of Venus (2) or Mercury), or the International Space Station (3).”

About The Sun (History & Future)

“The Sun is a spectral type G2V star in the Orion Arm (Orion Spur) of the Milky Way, some 25,000 light years from the Milky Way’s center and, on average, 8 light minutes away from Earth.”

What You’ll See Through Solar Filters

“All other filters work by picking out a single wavelength (shade of one color) from the entire visible spectrum (ROYGBIV – red, orange, etc.), allowing only that color to pass through to your eye.”

Bob Piekiel Hosts “Star Search!” At Green Lakes State Park – July 26 (27 alt.)

Greetings fellow astrophiles!

I’m happy to announce that Bob Piekiel will be hosting a free observing session at Green Lakes State Park on Friday, July 26th (with the 27th as a weather-alternate). Any interested CNYO scope owners planning on attending (with their scopes, that is) please drop me a line at observing@cnyo.org for the head count (will remind by email before the event). Everyone else, just show up!


View Larger Map

The night’s observing feast includes Venus in the early evening, Neptune 1/2 hour before the Moon rises at 11:00 p.m., and Saturn, our prize object for the year, visible throughout. Clear skies pending, it is possible we might even see some of the early part of the Delta Aquarid meteor shower. Additional details are available in the flyer below (click for a full-sized image for printing and distributing).

2013june11_Green_Lakes_Astronomy_Flyer

NASA Space Place – High-Energy Spy

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in June, 2013.

By Dr. Martin C. Weisskopf

2013february2_spaceplaceThe idea for the Chandra X-Ray Observatory was born only one year after Riccardo Giacconi discovered the first celestial X-ray source other than the Sun. In 1962, he used a sounding rocket to place the experiment above the atmosphere for a few minutes. The sounding rocket was necessary because the atmosphere blocks X-rays. If you want to look at X-ray emissions from objects like stars, galaxies, and clusters of galaxies, your instrument must get above the atmosphere.

Giacconi’s idea was to launch a large diameter (about 1 meter) telescope to bring X-rays to a focus. He wanted to investigate the hazy glow of X-rays that could be seen from all directions throughout the sounding rocket flight. He wanted to find out whether this glow was, in fact, made up of many point-like objects. That is, was the glow actually from millions of X-ray sources in the Universe. Except for the brightest sources from nearby neighbors, the rocket instrument could not distinguish objects within the glow.

Giacconi’s vision and the promise and importance of X-ray astronomy was borne out by many sounding rocket flights and, later satellite experiments, all of which provided years-, as opposed to minutes-, worth of data.

By 1980, we knew that X-ray sources exist within all classes of astronomical objects. In many cases, this discovery was completely unexpected. For example, that first source turned out to be a very small star in a binary system with a more normal star. The vast amount of energy needed to produce the X-rays was provided by gravity, which, because of the small star’s mass (about equal to the Sun’s) and compactness (about 10 km in diameter) would accelerate particles transferred from the normal star to X-ray emitting energies. In 1962, who knew such compact stars (in this case a neutron star) even existed, much less this energy transfer mechanism?

X-ray astronomy grew in importance to the fields of astronomy and astrophysics. The National Academy of Sciences, as part of its “Decadal Survey” released in 1981, recommended as its number one priority for large missions an X-ray observatory along the lines that Giacconi outlined in 1963. This observatory was eventually realized as the Chandra X-Ray Observatory, which launched in 1999.

The Chandra Project is built around a high-resolution X-ray telescope capable of sharply focusing X-rays onto two different X-ray-sensitive cameras. The focusing ability is of the caliber such that one could resolve an X-ray emitting dime at a distance of about 5 kilometers!

The building of this major scientific observatory has many stories.

2013june11_DEML50

Caption: Composite image of DEM L50, a so-called superbubble found in the Large Magellanic Cloud. X-ray data from Chandra is pink, while optical data is red, green, and blue. Superbubbles are created by winds from massive stars and the shock waves produced when the stars explode as supernovas.

Learn more about Chandra at www.science.nasa.gov/missions/chandra. Take kids on a “Trip to the Land of the Magic Windows” and see the universe in X-rays and other invisible wavelengths of light at spaceplace.nasa.gov/magic-windows.

Dr. Weisskopf is project scientist for NASA’s Chandra X-ray Observatory. This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

About NASA Space Place

The goal of the NASA Space Place is “to inform, inspire, and involve children in the excitement of science, technology, and space exploration.” More information is available at their website: http://spaceplace.nasa.gov/