Tag Archives: Albert Einstein

NASA Space Place – Gravitational Wave Astronomy Will Be The Next Great Scientific Frontier

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in March, 2016.

By Dr. Ethan Siegel

2013february2_spaceplaceImagine a world very different from our own: permanently shrouded in clouds, where the sky was never seen. Never had anyone see the Sun, the Moon, the stars or planets, until one night, a single bright object shone through. Imagine that you saw not only a bright point of light against a dark backdrop of sky, but that you could see a banded structure, a ringed system around it and perhaps even a bright satellite: a moon. That’s the magnitude of what LIGO (the Laser Interferometer Gravitational-wave Observatory) saw, when it directly detected gravitational waves for the first time.

An unavoidable prediction of Einstein’s General Relativity, gravitational waves emerge whenever a mass gets accelerated. For most systems — like Earth orbiting the Sun — the waves are so weak that it would take many times the age of the Universe to notice. But when very massive objects orbit at very short distances, the orbits decay noticeably and rapidly, producing potentially observable gravitational waves. Systems such as the binary pulsar PSR B1913+16 [the subtlety here is that binary pulsars may contain a single neutron star, so it’s best to be specific], where two neutron stars orbit one another at very short distances, had previously shown this phenomenon of orbital decay, but gravitational waves had never been directly detected until now.

When a gravitational wave passes through an objects, it simultaneously stretches and compresses space along mutually perpendicular directions: first horizontally, then vertically, in an oscillating fashion. The LIGO detectors work by splitting a laser beam into perpendicular “arms,” letting the beams reflect back and forth in each arm hundreds of times (for an effective path lengths of hundreds of km), and then recombining them at a photodetector. The interference pattern seen there will shift, predictably, if gravitational waves pass through and change the effective path lengths of the arms. Over a span of 20 milliseconds on September 14, 2015, both LIGO detectors (in Louisiana and Washington) saw identical stretching-and-compressing patterns. From that tiny amount of data, scientists were able to conclude that two black holes, of 36 and 29 solar masses apiece, merged together, emitting 5% of their total mass into gravitational wave energy, via Einstein’s E = mc2.

During that event, more energy was emitted in gravitational waves than by all the stars in the observable Universe combined. The entire Earth was compressed by less than the width of a proton during this event, yet thanks to LIGO’s incredible precision, we were able to detect it. At least a handful of these events are expected every year. In the future, different observatories, such as NANOGrav (which uses radiotelescopes to the delay caused by gravitational waves on pulsar radiation) and the space mission LISA will detect gravitational waves from supermassive black holes and many other sources. We’ve just seen our first event using a new type of astronomy, and can now test black holes and gravity like never before.

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

2016_02_gravitationalwaves.en

Caption: Observation of Gravitational Waves from a Binary Black Hole Merger B. P. Abbott et al., (LIGO Scientific Collaboration and Virgo Collaboration), Physical Review Letters 116, 061102 (2016). This figure shows the data (top panels) at the Washington and Louisiana LIGO stations, the predicted signal from Einstein’s theory (middle panels), and the inferred signals (bottom panels). The signals matched perfectly in both detectors. Click for a larger view.

About NASA Space Place

With articles, activities, crafts, games, and lesson plans, NASA Space Place encourages everyone to get excited about science and technology. Visit spaceplace.nasa.gov (facebook|twitter) to explore space and Earth science!

NASA Space Place – How Will We Finally Image The Event Horizon Of A Black Hole?

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in December, 2015.

By Dr. Ethan Siegel

2013february2_spaceplaceOne hundred years ago, Albert Einstein first put forth his theory of General Relativity, which laid out the relationship between spacetime and the matter and energy present within it. While it successfully recovered Newtonian gravity and predicted the additional precession of Mercury’s orbit, the only exact solution that Einstein himself discovered was the trivial one: that for completely empty space. Less than two months after releasing his theory, however, the German scientist Karl Schwarzschild provided a true exact solution, that of a massive, infinitely dense object, a black hole.

One of the curious things that popped out of Schwarzschild’s solution was the existence of an event horizon, or a region of space that was so severely curved that nothing, not even light, could escape from it. The size of this event horizon would be directly proportional to the mass of the black hole. A black hole the mass of Earth would have an event horizon less than a centimeter in radius; a black hole the mass of the sun would have an event horizon just a few kilometers in radius; and a supermassive black hole would have an event horizon the size of a planetary orbit.

Our galaxy has since been discovered to house a black hole about four million solar masses in size, with an event horizon about 23.6 million kilometers across, or about 40 percent the size of Mercury’s orbit around the sun. At a distance of 26,000 light years, it’s the largest event horizon in angular size visible from Earth, but at just 19 micro-arc-seconds, it would take a telescope the size of Earth to resolve it – a practical impossibility.

But all hope isn’t lost! If instead of a single telescope, we built an array of telescopes located all over Earth, we could simultaneously image the galactic center, and use the technique of VLBI (very long-baseline interferometry) to resolve the black hole’s event horizon. The array would only have the light-gathering power of the individual telescopes, meaning the black hole (in the radio) will appear very faint, but they can obtain the resolution of a telescope that’s the distance between the farthest telescopes in the array! The planned Event Horizon Telescope, spanning four different continents (including Antarctica), should be able to resolve under 10 micro-arc-seconds, imaging a black hole directly for the first time and answering the question of whether or not they truly contain an event horizon. What began as a mere mathematical solution is now just a few years away from being observed and known for certain!

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Astronomers have detected the largest X-ray flare ever from the supermassive black hole at the center of the Milky Way, known as <a href=

Sagittarius A* (Sgr A*), using NASA's Chandra X-ray Observatory. This event was 400 times brighter than the usual X-ray output from Sgr A*. The main portion of this graphic shows the area around Sgr A* in a Chandra image where low, medium, and high-energy X-rays are red, green, and blue respectively. The inset box contains an X-ray movie of the region close to Sgr A* and shows the giant flare, along with much steadier X-ray emission from a nearby magnetar, to the lower left. A magnetar is a neutron star with a strong magnetic field.” width=”640″ height=”640″ /> Astronomers have detected the largest X-ray flare ever from the supermassive black hole at the center of the Milky Way, known as Sagittarius A* (Sgr A*), using NASA’s Chandra X-ray Observatory. This event was 400 times brighter than the usual X-ray output from Sgr A*. The main portion of this graphic shows the area around Sgr A* in a Chandra image where low, medium, and high-energy X-rays are red, green, and blue respectively. The inset box contains an X-ray movie of the region close to Sgr A* and shows the giant flare, along with much steadier X-ray emission from a nearby magnetar, to the lower left. A magnetar is a neutron star with a strong magnetic field.

About NASA Space Place

With articles, activities, crafts, games, and lesson plans, NASA Space Place encourages everyone to get excited about science and technology. Visit spaceplace.nasa.gov (facebook|twitter) to explore space and Earth science!