Tag Archives: Aldebaran

NASA Night Sky Notes for February 2019: Hexagon At Night, Quartet In The Morning

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. Your tax dollars help promote science! The following article was provided for reprinting by the Night Sky Network in February, 2019.

By David Prosper

The stars that make up the Winter Hexagon asterism are some of the brightest in the night sky and February evenings are a great time to enjoy their sparkly splendor. The Winter Hexagon is so large in size that the six stars that make up its points are also the brightest members of six different constellations, making the Hexagon a great starting point for learning the winter sky. Find the Hexagon by looking southeast after sunset and finding the bright red star that forms the “left shoulder” of the constellation Orion: Betelgeuse. You can think of Betelgeuse as the center of a large irregular clock, with the Winter Hexagon stars as the clock’s hour numbers. Move diagonally across Orion to spot its “right foot,” the bright star Rigel. Now move clockwise from Rigel to the brightest star in the night sky: Sirius in Canis Major. Continue ticking along clockwise to Procyon in Canis Minor and then towards Pollux, the brighter of the Gemini twins. Keep moving around the circuit to find Capella in Auriga, and finish at orange Aldebaran, the “eye” of the V-shaped face of Taurus the Bull.

Two naked-eye planets are visible in the evening sky this month. As red Mars moves across Pisces, NASA’s InSight Mission is readying its suite of geological instruments designed to study the Martian interior. InSight and the rest of humanity’s robotic Martian emissaries will soon be joined by the Mars 2020 rover. The SUV-sized robot is slated to launch next year on a mission to study the possibility of past life on the red planet. A conjunction between Mars and Uranus on February 13 will be a treat for telescopic observers. Mars will pass a little over a degree away from Uranus and larger magnifications will allow comparisons between the small red disc of dusty Mars with the smaller and much more distant blue-green disc of ice giant Uranus.

Speedy Mercury has a good showing this month and makes its highest appearance in the evening on February 27; spot it above the western horizon at sunset. An unobstructed western view and binoculars will greatly help in catching Mercury against the glow of evening twilight.

The morning planets put on quite a show in February. Look for the bright planets Venus, Jupiter, and Saturn above the eastern horizon all month, at times forming a neat lineup. A crescent Moon makes a stunning addition on the mornings of February 1-2, and again on the 28th. Watch over the course of the month as Venus travels from its position above Jupiter to below dimmer Saturn. Venus and Saturn will be in close conjunction on the 18th; see if you can fit both planets into the same telescopic field of view.  A telescope reveals the brilliant thin crescent phase of Venus waxing into a wide gibbous phase as the planet passes around the other side of our Sun. The Night Sky Network has a simple activity that helps explain the nature of both Venus and Mercury’s phases at bit.ly/venusphases

You can catch up on all of NASA’s current and future missions at nasa.gov

The stars of the Winter Hexagon
Image created with help from Stellarium

The Night Sky Network program supports astronomy clubs across the USA dedicated to astronomy outreach. Visit nightsky.jpl.nasa.gov to find local clubs, events, and more!

NASA Night Sky Notes for December 2018: Observe Apollo 8’s Lunar Milestones

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. Your tax dollars help promote science! The following article was provided for reprinting by the Night Sky Network in December, 2018.

By David Prosper

December marks the 50th anniversary of NASA’s Apollo 8 mission, when humans first orbited the Moon in a triumph of human engineering. The mission may be most famous for “Earthrise,” the iconic photograph of Earth suspended over the rugged lunar surface. “Earthrise” inspired the imaginations of people around the world and remains one of the most famous photos ever taken. This month also brings a great potential display of the Geminids and a close approach by Comet 46P/Wirtanen.

You can take note of Apollo 8’s mission milestones while observing the Moon this month. Watch the nearly full Moon rise just before sunset on December 21, exactly 50 years after Apollo 8 launched; it will be near the bright orange star Aldebaran in Taurus. The following evenings watch it pass over the top of Orion and on through Gemini; on those days five decades earlier, astronauts Frank Borman, Jim Lovell, and Bill Anders sped towards the Moon in their fully crewed command module. Notice how the Moon rises later each evening, and how its phase wanes from full on Dec 22 to gibbous through the rest of the week. Can you imagine what phase Earth would appear as if you were standing on the Moon, looking back? The three brave astronauts spent 20 sleepless hours in orbit around the Moon, starting on Dec 24, 1968. During those ten orbits they became the first humans to see with their own eyes both the far side of the Moon and an Earthrise! The crew telecast a holiday message on December 25 to a record number of Earthbound viewers as they orbited over the lifeless lunar terrain; “Good night, good luck, a merry Christmas and God bless all of you – all of you on the good Earth.” 50 years later, spot the Moon on these holiday evenings as it travels through Cancer and Leo. Just two days later the astronauts splashed down into the Pacific Ocean after achieving all the mission’s test objectives, paving the way for another giant leap in space exploration the following year.

The Geminids, an excellent annual meteor shower, peaks the evening of December 13 through the morning of the 14th. They get their chance to truly shine after a waxing crescent Moon sets around 10:30 pm on the 13th. Expert Geminid observers can spot around 100 meteors per hour under ideal conditions. You’ll spot quite a few meteors by avoiding bad weather and light pollution if you can, and of course make sure to bundle up and take frequent warming breaks. The Geminids have an unusual origin compared to most meteor showers, which generally spring from icy comets. The tiny particles Earth passes through these evenings come from a strange “rock comet” named asteroid 3200 Phaethon. This dusty asteroid experiences faint outbursts of fine particles of rock instead of ice.

You can also look for comet 46P/Wirtanen while you’re out meteor watching. Its closest approach to Earth brings it within 7.1 million miles of us on December 16. That’s 30 times the average Earth-Moon distance! While passing near enough to rank as the 10th closest cometary approach in modern times, there is no danger of this object striking our planet. Cometary brightness is hard to predict, and while there is a chance comet 46P/Wirtanen may flare up to naked eye visibility, it will likely remain visible only via binoculars or telescopes. You’ll be able to see for yourself how much 46P/Wirtanen actually brightens. Some of the best nights to hunt for it will be December 15 and 16 as it passes between two prominent star clusters in Taurus: the Pleiades and the V-shaped Hyades. Happy hunting!

Catch up on all of NASA’s past, current, and future missions at nasa.gov.

Caption: Earthrise, 1968. Note the phase of Earth as seen from the Moon. Nearside lunar observers see Earth go through a complete set of phases. However, only orbiting astronauts witness Earthrises; for stationary lunar observers, Earth barely moves at all. Why is that? Credit: Bill Anders/NASA

About The NASA Night Sky Network

The Night Sky Network program supports astronomy clubs across the USA dedicated to astronomy outreach. Visit nightsky.jpl.nasa.gov to find local clubs, events, and more!

5 March 2017 Aldebaran Grazing Occultation – Combined Videos On vimeo.com

Greetings, fellow astrophiles!

The following came across my email not to long ago from Brad Timerson of ASRAS and the IOTA, featuring the combined efforts of a number of members from the North York Astronomical Association. Five videos of the Aldebaran occultation this past March (posted about on the CNYO website HERE) were aligned and combined by vimeo contributor Andreas Gada into an amazing sequence that shows just how different the occultation looked even for six groups of observers lined up on the same road way up in Mississauga, Ontario.

Direct link to the vimeo: Aldebaran Grazing Occultation March 5, 2017 Combined Videos

Aldebaran Grazing Occultation March 5, 2017 Combined Videos from Andreas Gada on Vimeo.

Video Description: On March 5, 2017 a grazing occultation of Aldebaran occurred. To observe and image this event the North York Astronomical Association organized an outing to Mississauga Ontario. Ten people set up their equipment on Lionhead Golf Road. This movie combines the videos obtained to create a stereophonic visual account of this dynamic event.

Andreas also put together a video combining his own recording station with light curve data from Brad. That video, “Aldebaran Grazing Occultation March 5, 2017,” can be found at: vimeo.com/209855792.

Aldebaran Grazing Occultation March 5, 2017 from Andreas Gada on Vimeo.

The event page itself can be found at:
asteroidoccultation.com/observations/AldebaranGraze_05March2017/