Tag Archives: Ceres

“Planet 9 From Outer Space” – Thursday, April 19 At Liverpool Public Library

Greetings, fellow astrophiles!

And apologies for the short-ish notice. This is not a showing of the movie “Plan 9,” but risks being just as cheesy. CNYO makes its yearly (if not more often) return to LPL this Thursday with a lecture that actually overlaps nicely with a lecture topic from a few years back that was presented at a CNY Skeptics meetings – We step out from our discussion of Ceres and Pluto into a discussion of Pluto and the theorized Planet IX (not to be confused with Planet X). As always, we check on the state of the binocular loaner program as well, with hopes that all have been reserved and none are available.

Link details can be found at calendar.lpl.org


Caption: The 6 most distant objects known in the Solar System, then the predicted orbit of the unknown 7th. Image courtesy of Caltech/R. Hurt (IPAC)

Planet 9(,) From Outer Space

Event Type: Adult Programs
Date: 4/19/2018
Start Time: 7:00 PM
End Time: 8:30 PM
Description: History, Politics and Physics Out Beyond Neptune

google map directions to LPL.

Pluto had a remarkably good and lucky run as the 9th planet in our Solar System. Its demotion to dwarf planet status in late 2006 was due to a number of factors, driven largely by the discovery that Pluto is not alone either in size or in location out beyond Neptune’s orbit. Modern telescopes have discovered numerous dwarf planets out in the Kuiper Belt – a region of the Solar System for which Pluto is now the most famous member. By determining the orbits of these distant objects, astrophysicists have even made the prediction that something much larger in size must be lurking in the distance – large enough to qualify as a true planet if and when it is officially observed.

Dr. Damian Allis is a NASA Solar System Ambassador, director of CNY Observers and writes the monthly “Upstate New York Stargazing” column for syracuse.com and newyorkupstate.com.

Location: Carman Community Room
Presenter: Cindy Hibbert

NASA Space Place – NOAA’s Joint Polar Satellite System (JPSS) To Monitor Earth As Never Before

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in April, 2017.

By Ethan Siegel

2013february2_spaceplaceLater this year, an ambitious new Earth-monitoring satellite will launch into a polar orbit around our planet. The new satellite—called JPSS-1—is a collaboration between NASA and NOAA. It is part of a mission called the Joint Polar Satellite System, or JPSS.

At a destination altitude of only 824 km, it will complete an orbit around Earth in just 101 minutes, collecting extraordinarily high-resolution imagery of our surface, oceans and atmosphere. It will obtain full-planet coverage every 12 hours using five separate, independent instruments. This approach enables near-continuous monitoring of a huge variety of weather and climate phenomena.

JPSS-1 will improve the prediction of severe weather events and will help advance early warning systems. It will also be indispensable for long-term climate monitoring, as it will track global rainfall, drought conditions and ocean properties. 

The five independent instruments on board are the main assets of this mission:

* The Cross-track Infrared Sounder (CrIS) will detail the atmosphere’s 3D structure, measuring water vapor and temperature in over 1,000 infrared spectral channels. It will enable accurate weather forecasting up to seven days in advance of any major weather events.

* The Advanced Technology Microwave Sounder (ATMS) adds 22 microwave channels to CrIS’s measurements, improving temperature and moisture readings.

* Taking visible and infrared images of Earth’s surface at 750 meter resolution, the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument will enable monitoring of weather patterns, fires, sea temperatures, light pollution, and ocean color observations at unprecedented resolutions.

* The Ozone Mapping and Profiler Suite (OMPS) will measure how ozone concentration varies with altitude and in time over every location on Earth’s surface. This can help us understand how UV light penetrates the various layers of Earth’s atmosphere.

* The Clouds and the Earth’s Radiant System (CERES) instrument will quantify the effect of clouds on Earth’s energy balance, measuring solar reflectance and Earth’s radiance. It will greatly reduce one of the largest sources of uncertainty in climate modeling.

The information from this satellite will be important for emergency responders, airline pilots, cargo ships, farmers and coastal residents, and many others. Long and short term weather monitoring will be greatly enhanced by JPSS-1 and the rest of the upcoming satellites in the JPSS system.

Want to teach kids about polar and geostationary orbits? Go to the NASA Space Place: spaceplace.nasa.gov/geo-orbits/

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Caption: Ball and Raytheon technicians integrate the VIIRS Optical and Electrical Modules onto the JPSS-1 spacecraft in 2015. The spacecraft will be ready for launch later this year. Image Credit: Ball Aerospace & Technologies Corp.

About NASA Space Place

With articles, activities, crafts, games, and lesson plans, NASA Space Place encourages everyone to get excited about science and technology. Visit spaceplace.nasa.gov (facebook|twitter) to explore space and Earth science!

NASA Space Place – NOAA’s Joint Polar Satellite System (JPSS) To Revolutionize Earth-Watching

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in May, 2016.

By Dr. Ethan Siegel

2013february2_spaceplaceIf you want to collect data with a variety of instruments over an entire planet as quickly as possible, there are two trade-offs you have to consider: how far away you are from the world in question, and what orientation and direction you choose to orbit it. For a single satellite, the best of all worlds comes from a low-Earth polar orbit, which does all of the following:

* orbits the Earth very quickly: once every 101 minutes,
* is close enough at 824 km high to take incredibly high-resolution imagery,
* has five separate instruments each probing various weather and climate phenomena,
* and is capable of obtaining full-planet coverage every 12 hours.

The type of data this new satellite – the Joint Polar Satellite System-1 (JPSS-1) — will take will be essential to extreme weather prediction and in early warning systems, which could have severely mitigated the impact of natural disasters like Hurricane Katrina. Each of the five instruments on board are fundamentally different and complementary to one another. They are:

1. The Cross-track Infrared Sounder (CrIS), which will measure the 3D structure of the atmosphere, water vapor and temperature in over 1,000 infrared spectral channels. This instrument is vital for weather forecasting up to seven days in advance of major weather events.

2. The Advanced Technology Microwave Sounder (ATMS), which assists CrIS by adding 22 microwave channels to improve temperature and moisture readings down to 1 Kelvin accuracy for tropospheric layers.

3. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument, which takes visible and infrared pictures at a resolution of just 400 meters (1312 feet), enables us to track not just weather patterns but fires, sea temperatures, nighttime light pollution as well as ocean-color observations.

4. The Ozone Mapping and Profiler Suite (OMPS), which measures how the ozone concentration varies with altitude and in time over every location on Earth’s surface. This instrument is a vital tool for understanding how effectively ultraviolet light penetrates the atmosphere.

5. Finally, the Clouds and the Earth’s Radiant System (CERES) will help understand the effect of clouds on Earth’s energy balance, presently one of the largest sources of uncertainty in climate modeling.

The JPSS-1 satellite is a sophisticated weather monitoring tool, and paves the way for its’ sister satellites JPSS-2, 3 and 4. It promises to not only provide early and detailed warnings for disasters like hurricanes, volcanoes and storms, but for longer-term effects like droughts and climate changes. Emergency responders, airline pilots, cargo ships, farmers and coastal residents all rely on NOAA and the National Weather Service for informative short-and-long-term data. The JPSS constellation of satellites will extend and enhance our monitoring capabilities far into the future.

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

2016_05_JPSS.en

Caption: an artist’s concept of the JPSS-2 Satellite for NOAA and NASA by Orbital ATK (top); complete temperature map of the world from NOAA’s National Weather Service (bottom).

About NASA Space Place

With articles, activities, crafts, games, and lesson plans, NASA Space Place encourages everyone to get excited about science and technology. Visit spaceplace.nasa.gov (facebook|twitter) to explore space and Earth science!