Tag Archives: Ceres

NASA News Digest: Space Science For 4 March – 12 March 2015

Greetings fellow astrophiles,

The NASA News service provides up-to-date announcements of NASA policy, news events, and space science. A recent selection of space science articles are provided below, including direct links to the full announcements. Those interested in receiving these news announcements directly from NASA can subscribe to their service by sending an email to:

hqnews-request@newsletters.nasa.gov?subject=subscribe

NASA’s Chandra Observatory Finds Cosmic Showers Halt Galaxy Growth

RELEASE 15-028 (Click here for the full article) – 4 March 2015

2015mar14_15_028Using NASA’s Chandra X-ray Observatory, astronomers have found that the growth of galaxies containing supermassive black holes can be slowed down by a phenomenon referred to as cosmic precipitation.

Cosmic precipitation is not a weather event, as we commonly associate the word — rain, sleet, or snow. Rather, it is a mechanism that allows hot gas to produce showers of cool gas clouds that fall into a galaxy. Researchers have analyzed X-rays from more than 200 galaxy clusters, and believe that this gaseous precipitation is key to understanding how giant black holes affect the growth of galaxies.

“We know that precipitation can slow us down on our way to work,” said Mark Voit of Michigan State University (MSU) in East Lansing, lead author of the paper that appears in the latest issue of Nature. “Now we have evidence that it can also slow down star formation in galaxies with huge black holes.”

An interactive image, podcast, and video about these findings are available at: chandra.si.edu

For more Chandra images, multimedia and related materials, visit: www.nasa.gov/chandra

NASA Research Suggests Mars Once Had More Water Than Earth’s Arctic Ocean

RELEASE 15-032 (Click here for the full article) – 5 March 2015

2015mar14_15_032A primitive ocean on Mars held more water than Earth’s Arctic Ocean, according to NASA scientists who, using ground-based observatories, measured water signatures in the Red Planet’s atmosphere.

Scientists have been searching for answers to why this vast water supply left the surface. Details of the observations and computations appear in Thursday’s edition of Science magazine.

“Our study provides a solid estimate of how much water Mars once had, by determining how much water was lost to space,” said Geronimo Villanueva, a scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and lead author of the new paper. “With this work, we can better understand the history of water on Mars.”

Perhaps about 4.3 billion years ago, Mars would have had enough water to cover its entire surface in a liquid layer about 450 feet (137 meters) deep. More likely, the water would have formed an ocean occupying almost half of Mars’ northern hemisphere, in some regions reaching depths greater than a mile (1.6 kilometers).

To view a video of this finding, visit: youtu.be/WH8kHncLZwM

More information about NASA’s Mars programs is online at: www.nasa.gov/mars

NASA Spacecraft Becomes First To Orbit A Dwarf Planet

RELEASE 15-034 (Click here for the full article) – 6 March 2015

2015mar14_15_034NASA’s Dawn spacecraft has become the first mission to achieve orbit around a dwarf planet. The spacecraft was approximately 38,000 miles (61,000 kilometers) from Ceres when it was captured by the dwarf planet’s gravity at about 4:39 a.m. PST (7:39 a.m. EST) Friday.

Mission controllers at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California received a signal from the spacecraft at 5:36 a.m. PST (8:36 a.m. EST) that Dawn was healthy and thrusting with its ion engine, the indicator Dawn had entered orbit as planned.

“Since its discovery in 1801, Ceres was known as a planet, then an asteroid and later a dwarf planet,” said Marc Rayman, Dawn chief engineer and mission director at JPL. “Now, after a journey of 3.1 billion miles (4.9 billion kilometers) and 7.5 years, Dawn calls Ceres, home.”

In addition to being the first spacecraft to visit a dwarf planet, Dawn also has the distinction of being the first mission to orbit two extraterrestrial targets. From 2011 to 2012, the spacecraft explored the giant asteroid Vesta, delivering new insights and thousands of images from that distant world. Ceres and Vesta are the two most massive residents of our solar system’s main asteroid belt between Mars and Jupiter.

For a complete list of mission participants, visit: dawn.jpl.nasa.gov/mission

For more information about Dawn, visit: www.nasa.gov/dawn

Spacecraft Data Suggest Saturn Moon’s Ocean May Harbor Hydrothermal Activity

RELEASE 15-036 (Click here for the full article) – 11 March 2015

2015mar14_15_036NASA’s Cassini spacecraft has provided scientists the first clear evidence that Saturn’s moon Enceladus exhibits signs of present-day hydrothermal activity which may resemble that seen in the deep oceans on Earth. The implications of such activity on a world other than our planet open up unprecedented scientific possibilities.

“These findings add to the possibility that Enceladus, which contains a subsurface ocean and displays remarkable geologic activity, could contain environments suitable for living organisms,” said John Grunsfeld astronaut and associate administrator of NASA’s Science Mission Directorate in Washington. “The locations in our solar system where extreme environments occur in which life might exist may bring us closer to answering the question: are we alone in the Universe.”

Hydrothermal activity occurs when seawater infiltrates and reacts with a rocky crust and emerges as a heated, mineral-laden solution, a natural occurrence in Earth’s oceans. According to two science papers, the results are the first clear indications an icy moon may have similar ongoing active processes.

More information about Cassini, visit: www.nasa.gov/cassini and saturn.jpl.nasa.gov

NASA’s Hubble Observations Suggest Underground Ocean On Jupiter’s Largest Moon

RELEASE 15-033 (Click here for the full article) – 12 March 2015

2015mar14_15_033i1NASA’s Hubble Space Telescope has the best evidence yet for an underground saltwater ocean on Ganymede, Jupiter’s largest moon. The subterranean ocean is thought to have more water than all the water on Earth’s surface.

Identifying liquid water is crucial in the search for habitable worlds beyond Earth and for the search of life as we know it.

“This discovery marks a significant milestone, highlighting what only Hubble can accomplish,” said John Grunsfeld, associate administrator of NASA’s Science Mission Directorate at NASA Headquarters, Washington. “In its 25 years in orbit, Hubble has made many scientific discoveries in our own solar system. A deep ocean under the icy crust of Ganymede opens up further exciting possibilities for life beyond Earth.”

Ganymede is the largest moon in our solar system and the only moon with its own magnetic field. The magnetic field causes aurorae, which are ribbons of glowing, hot electrified gas, in regions circling the north and south poles of the moon. Because Ganymede is close to Jupiter, it is also embedded in Jupiter’s magnetic field. When Jupiter’s magnetic field changes, the aurorae on Ganymede also change, “rocking” back and forth.

For images and more information about Hubble, visit: www.nasa.gov/hubble and hubblesite.org/news/2015/09

NASA News Digest: Space Science For 27 January – 9 February 2014 – Dwarf Planet-Centric!

Greetings fellow astrophiles,

The NASA News service provides up-to-date announcements of NASA policy, news events, and space science. A recent selection of space science articles are provided below, including direct links to the full announcements. Those interested in receiving these news announcements directly from NASA can subscribe to their service by sending an email to:

hqnews-request@newsletters.nasa.gov?subject=subscribe

NASA’s Dawn Spacecraft Captures Best-Ever View Of Dwarf Planet

RELEASE 15-014 (Click here for the full article) – 27 January 2015

2015feb9_15_014NASA’s Dawn spacecraft has returned the sharpest images ever seen of the dwarf planet Ceres. The images were taken 147,000 miles (237,000 kilometers) from Ceres on Jan. 25, and represent a new milestone for a spacecraft that soon will become the first human-made probe to visit a dwarf planet.

“We know so little about our vast solar system, but thanks to economical missions like Dawn, those mysteries are being solved,” said Jim Green, Planetary Science Division Director at NASA Headquarters in Washington.

At 43 pixels wide, the new images are more than 30 percent higher in resolution than those taken by NASA’s Hubble Space Telescope in 2003 and 2004 at a distance of over 150 million miles. The resolution is higher because Dawn is traveling through the solar system to Ceres, while Hubble remains fixed in Earth orbit. The new Dawn images come on the heels of initial navigation images taken Jan. 13 that reveal a white spot on the dwarf planet and the suggestion of craters. Hubble images also had glimpsed a white spot on the dwarf planet, but its nature is still unknown.

The new Dawn images are available online at: go.nasa.gov/1wyp0LA

To view the images taken by Hubble, visit: go.nasa.gov/1Ju41mf

More information about Dawn is available online at: www.nasa.gov/dawn

NASA Spacecraft Returns New Images Of Pluto En Route To Historic Encounter

RELEASE 15-018 (Click here for the full article) – 2 July 2014

2015feb9_15_018NASA’s New Horizons spacecraft returned its first new images of Pluto on Wednesday, as the probe closes in on the dwarf planet. Although still just a dot along with its largest moon, Charon, the images come on the 109th birthday of Clyde Tombaugh, who discovered the distant icy world in 1930.

“My dad would be thrilled with New Horizons,” said Clyde Tombaugh’s daughter Annette Tombaugh, of Las Cruces, New Mexico. “To actually see the planet that he had discovered, and find out more about it — to get to see the moons of Pluto– he would have been astounded. I’m sure it would have meant so much to him if he were still alive today.”

New Horizons was more than 126 million miles (nearly 203 million kilometers) away from Pluto when it began taking images. The new images, taken with New Horizons’ telescopic Long-Range Reconnaissance Imager (LORRI) on Jan. 25 and Jan. 27, are the first acquired during the spacecraft’s 2015 approach to the Pluto system, which culminates with a close flyby of Pluto and its moons on July 14.

To view the Pluto image online and see the mission timeline for upcoming images, visit: www.nasa.gov/newhorizons and pluto.jhuapl.edu

NASA Space Place – It Takes More Than Warm Porridge To Make A Goldilocks Zone

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in November, 2012.

By Diane K. Fisher

2013february2_spaceplaceThe “Goldilocks Zone” describes the region of a solar system that is just the right distance from the star to make a cozy, comfy home for a life-supporting planet. It is a region that keeps the planet warm enough to have a liquid ocean, but not so warm that the ocean boils off into space. Obviously, Earth orbits the Sun in our solar system’s “Goldilocks Zone.”

But there are other conditions besides temperature that make our part of the solar system comfortable for life. Using infrared data from the Spitzer Space Telescope, along with theoretical models and archival observations, Rebecca Martin, a NASA Sagan Fellow from the University of Colorado in Boulder, and astronomer Mario Livio of the Space Telescope Science Institute in Baltimore, Maryland, have published a new study suggesting that our solar system and our place in it is special in at least one other way.

This fortunate “just right” condition involves Jupiter and its effect on the asteroid belt.
Many other solar systems discovered in the past decade have giant gas planets in very tight orbits around their stars. Only 19 out of 520 solar systems studied have Jupiter-like planets in orbits beyond what is known as the “snow line”—the distance from the star at which it is cool enough for water (and ammonia and methane) to condense into ice. Scientists believe our Jupiter formed a bit farther away from the Sun than it is now. Although the giant planet has moved a little closer to the Sun, it is still beyond the snow line.

So why do we care where Jupiter hangs out? Well, the gravity of Jupiter, with its mass of 318 Earths, has a profound effect on everything in its region, including the asteroid belt. The asteroid belt is a region between Mars and Jupiter where millions of mostly rocky objects (some water-bearing) orbit. They range in size from dwarf planet Ceres at more than 600 miles in diameter to grains of dust. In the early solar system, asteroids (along with comets) could have been partly responsible for delivering water to fill the ocean of a young Earth. They could have also brought organic molecules to Earth, from which life eventually evolved.

Jupiter’s gravity keeps the asteroids pretty much in their place in the asteroid belt, and doesn’t let them accrete to form another planet. If Jupiter had moved inward through the asteroid belt toward the Sun, it would have scattered the asteroids in all directions before Earth had time to form. And no asteroid belt means no impacts on Earth, no water delivery, and maybe no life-starting molecules either. Asteroids may have also delivered such useful metals as gold, platinum, and iron to Earth’s crust.

But, if Jupiter had not migrated inward at all since it formed father away from the Sun, the asteroid belt would be totally undisturbed and would be a lot more dense with asteroids than it is now. In that case, Earth would have been blasted with a lot more asteroid impacts, and life may have never had a chance to take root.

The infrared data from the Spitzer Space Telescope contributes in unexpected ways in revealing and supporting new ideas and theories about our universe. Read more about this study and other Spitzer contributions at spitzer.caltech.edu. Kids can learn about infrared light and enjoy solving Spitzer image puzzles at spaceplace.nasa.gov/spitzer-slyder.

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

2013february18_asteroid

Caption: Our solar system is represented by the middle scenario, where the gas giant planet has migrated inward, but still remains beyond the asteroid belt.

About NASA Space Place

The goal of the NASA Space Place is “to inform, inspire, and involve children in the excitement of science, technology, and space exploration.” More information is available at their website: http://spaceplace.nasa.gov/