Tag Archives: Einstein

NASA Space Place – No Surprise! Earth’s Strongest Gravity Lies Atop The Highest Mountains

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in April, 2014.

By Dr. Ethan Siegel

2013february2_spaceplacePut more mass beneath your feet and feel the downward acceleration due to gravity increase. Newton’s law of universal gravitation may have been superseded by Einstein’s, but it still describes the gravitational force and acceleration here on Earth to remarkable precision. The acceleration you experience is directly proportional to the amount of mass you “see,” but inversely proportional to the distance from you to that mass squared.

The denser the mass beneath your feet, the stronger the gravitational force, and when you are closer to such a mass, the force is even greater. At higher elevations or even higher altitudes, you’d expect your gravitational force to drop as you move farther from Earth’s center. You’d probably also expect that downward acceleration to be greater if you stood atop a large mountain than if you flew tens of thousands of feet above a flat ocean, with nothing but ultra-light air and liquid water beneath you for all those miles. In fact this is true, but not just due to the mountain’s extra mass!

Earth is built like a layer-cake, with the less dense atmosphere, ocean, and crust floating atop the denser mantle, which in turn floats atop the outer and inner cores of our planet. An iceberg’s buoyancy is enough to lift only about one tenth of it above the sea, with the other nine tenths below the surface. Similarly, each and every mountain range has a corresponding “invisible mountain” that dips deep into the mantle. Beneath the ocean floor, Earth’s crust might be only three to six miles thick, but it can exceed 40 miles in thickness around major mountain ranges like the Himalayas and the Andes. It’s where one of Earth’s tectonic plates subducts beneath another that we see the largest gravitational anomalies: another confirmation of the theory of continental drift.

A combination of instruments aboard NASA’s Gravity Recovery and Climate Experiment (GRACE) satellites, including the SuperSTAR accelerometer, the K-band ranging system and the onboard GPS receiver, have enabled the construction of the most accurate map of Earth’s gravitational field ever: to accelerations of nanometers per second squared. While the mountaintops may be farther from Earth’s center than any other point, the extra mass of the mountains and their roots – minus the mass of the displaced mantle – accounts for the true gravitational accelerations we actually see. It’s only by the grace of these satellites that we can measure this to such accuracy and confirm what was first conjectured in the 1800s: that the full layer-cake structure of Earth must be accounted for to explain the gravity we experience on our world!

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

2015june16_grace_en

Image credit: NASA / GRACE mission / Christoph Reigber, et al. (2005): An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S, Journal of Geodynamics 39(1),1–10. Reds indicate greater gravitational anomalies; blues are smaller ones.

About NASA Space Place

The goal of the NASA Space Place is “to inform, inspire, and involve children in the excitement of science, technology, and space exploration.” More information is available at their website: http://spaceplace.nasa.gov/

NASA Space Place – Twinkle, Twinkle, Variable Star

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in September, 2014.

By Dr. Ethan Siegel

2013february2_spaceplaceAs bright and steady as they appear, the stars in our sky won’t shine forever. The steady brilliance of these sources of light is powered by a tumultuous interior, where nuclear processes fuse light elements and isotopes into heavier ones. Because the heavier nuclei up to iron (Fe), have a greater binding energies-per-nucleon, each reaction results in a slight reduction of the star’s mass, converting it into energy via Einstein’s famous equation relating changes in mass and energy output, E = mc2. Over timescales of tens of thousands of years, that energy migrates to the star’s photosphere, where it’s emitted out into the universe as starlight.

There’s only a finite amount of fuel in there, and when stars run out, the interior contracts and heats up, often enabling heavier elements to burn at even higher temperatures, and causing sun-like stars to grow into red giants. Even though the cores of both hydrogen-burning and helium-burning stars have consistent, steady energy outputs, our sun’s overall brightness varies by just ~0.1%, while red giants can have their brightness’s vary by factors of thousands or more over the course of a single year! In fact, the first periodic or pulsating variable star ever discovered—Mira (omicron Ceti)—behaves exactly in this way.

There are many types of variable stars, including Cepheids, RR Lyrae, cataclysmic variables and more, but it’s the Mira-type variables that give us a glimpse into our Sun’s likely future. In general, the cores of stars burn through their fuel in a very consistent fashion, but in the case of pulsating variable stars the outer layers of stellar atmospheres vary. Initially heating up and expanding, they overshoot equilibrium, reach a maximum size, cool, then often forming neutral molecules that behave as light-blocking dust, with the dust then falling back to the star, ionizing and starting the whole process over again. This temporarily neutral dust absorbs the visible light from the star and re-emits it, but as infrared radiation, which is invisible to our eyes. In the case of Mira (and many red giants), it’s Titanium Monoxide (TiO) that causes it to dim so severely, from a maximum magnitude of +2 or +3 (clearly visible to the naked eye) to a minimum of +9 or +10, requiring a telescope (and an experienced observer) to find!

Visible in the constellation of Cetus during the fall-and-winter from the Northern Hemisphere, Mira is presently at magnitude +7 and headed towards its minimum, but will reach its maximum brightness again in May of next year and every 332 days thereafter. Shockingly, Mira contains a huge, 13 light-year-long tail — visible only in the UV — that it leaves as it rockets through the interstellar medium at 130 km/sec! Look for it in your skies all winter long, and contribute your results to the AAVSO (American Association of Variable Star Observers) International Database to help study its long-term behavior!

Check out some cool images and simulated animations of Mira here: www.nasa.gov/mission_pages/galex/20070815/v.html

Kids can learn all about Mira at NASA’s Space Place: spaceplace.nasa.gov/mira/en/.

2014sept25_mira

Caption: NASA’s Galaxy Evolution Explorer (GALEX) spacecraft, of Mira and its tail in UV light (top); Margarita Karovska (Harvard-Smithsonian CfA) / NASA’s Hubble Space Telescope image of Mira, with the distortions revealing the presence of a binary companion (lower left); public domain image of Orion, the Pleiades and Mira (near maximum brightness) by Brocken Inaglory of Wikimedia Commons under CC-BY-SA-3.0 (lower right).

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

About NASA Space Place

The goal of the NASA Space Place is “to inform, inspire, and involve children in the excitement of science, technology, and space exploration.” More information is available at their website: http://spaceplace.nasa.gov/

NASA Space Place – A Glorious Gravitational Lens

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in June, 2014.

By Dr. Ethan Siegel

2013february2_spaceplaceAs we look at the universe on larger and larger scales, from stars to galaxies to groups to the largest galaxy clusters, we become able to perceive objects that are significantly farther away. But as we consider these larger classes of objects, they don’t merely emit increased amounts of light, but they also contain increased amounts of mass. Under the best of circumstances, these gravitational clumps can open up a window to the distant universe well beyond what any astronomer could hope to see otherwise.

The oldest style of telescope is the refractor, where light from an arbitrarily distant source is passed through a converging lens. The incoming light rays—initially spread over a large area—are brought together at a point on the opposite side of the lens, with light rays from significantly closer sources bent in characteristic ways as well. While the universe doesn’t consist of large optical lenses, mass itself is capable of bending light in accord with Einstein’s Theory of General Relativity, and acts as a gravitational lens!

The first prediction that real-life galaxy clusters would behave as such lenses came from Fritz Zwicky in 1937. These foreground masses would lead to multiple images and distorted arcs of the same lensed background object, all of which would be magnified as well. It wasn’t until 1979, however, that this process was confirmed with the observation of the Twin Quasar: QSO 0957+561. Gravitational lensing requires a serendipitous alignment of a massive foreground galaxy cluster with a background galaxy (or cluster) in the right location to be seen by an observer at our location, but the universe is kind enough to provide us with many such examples of this good fortune, including one accessible to astrophotographers with 11″ scopes and larger: Abell 2218.

Located in the Constellation of Draco at position (J2000): R.A. 16h 35m 54s, Dec. +66° 13′ 00″ (about 2° North of the star 18 Draconis), Abell 2218 is an extremely massive cluster of about 10,000 galaxies located 2 billion light years away, but it’s also located quite close to the zenith for northern hemisphere observers, making it a great target for deep-sky astrophotography. Multiple images and sweeping arcs abound between magnitudes 17 and 20, and include galaxies at a variety of redshifts ranging from z=0.7 all the way up to z=2.5, with farther ones at even fainter magnitudes unveiled by Hubble. For those looking for an astronomical challenge this summer, take a shot at Abell 2218, a cluster responsible for perhaps the most glorious gravitational lens visible from Earth!

Learn about current efforts to study gravitational lensing using NASA facilities: www.nasa.gov/press/2014/january/nasas-fermi-makes-first-gamma-ray-study-of-a-gravitational-lens/

Kids can learn about gravity at NASA’s Space Place: spaceplace.nasa.gov/what-is-gravity/

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

2014june23_abel2218

Caption: Abel 2218. Image credit: NASA, ESA, and Johan Richard (Caltech). Acknowledgement: Davide de Martin & James Long (ESA/Hubble).

About NASA Space Place

The goal of the NASA Space Place is “to inform, inspire, and involve children in the excitement of science, technology, and space exploration.” More information is available at their website: http://spaceplace.nasa.gov/