Tag Archives: Gravity

NASA Space Place – Gravitational Wave Astronomy Will Be The Next Great Scientific Frontier

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in March, 2016.

By Dr. Ethan Siegel

2013february2_spaceplaceImagine a world very different from our own: permanently shrouded in clouds, where the sky was never seen. Never had anyone see the Sun, the Moon, the stars or planets, until one night, a single bright object shone through. Imagine that you saw not only a bright point of light against a dark backdrop of sky, but that you could see a banded structure, a ringed system around it and perhaps even a bright satellite: a moon. That’s the magnitude of what LIGO (the Laser Interferometer Gravitational-wave Observatory) saw, when it directly detected gravitational waves for the first time.

An unavoidable prediction of Einstein’s General Relativity, gravitational waves emerge whenever a mass gets accelerated. For most systems — like Earth orbiting the Sun — the waves are so weak that it would take many times the age of the Universe to notice. But when very massive objects orbit at very short distances, the orbits decay noticeably and rapidly, producing potentially observable gravitational waves. Systems such as the binary pulsar PSR B1913+16 [the subtlety here is that binary pulsars may contain a single neutron star, so it’s best to be specific], where two neutron stars orbit one another at very short distances, had previously shown this phenomenon of orbital decay, but gravitational waves had never been directly detected until now.

When a gravitational wave passes through an objects, it simultaneously stretches and compresses space along mutually perpendicular directions: first horizontally, then vertically, in an oscillating fashion. The LIGO detectors work by splitting a laser beam into perpendicular “arms,” letting the beams reflect back and forth in each arm hundreds of times (for an effective path lengths of hundreds of km), and then recombining them at a photodetector. The interference pattern seen there will shift, predictably, if gravitational waves pass through and change the effective path lengths of the arms. Over a span of 20 milliseconds on September 14, 2015, both LIGO detectors (in Louisiana and Washington) saw identical stretching-and-compressing patterns. From that tiny amount of data, scientists were able to conclude that two black holes, of 36 and 29 solar masses apiece, merged together, emitting 5% of their total mass into gravitational wave energy, via Einstein’s E = mc2.

During that event, more energy was emitted in gravitational waves than by all the stars in the observable Universe combined. The entire Earth was compressed by less than the width of a proton during this event, yet thanks to LIGO’s incredible precision, we were able to detect it. At least a handful of these events are expected every year. In the future, different observatories, such as NANOGrav (which uses radiotelescopes to the delay caused by gravitational waves on pulsar radiation) and the space mission LISA will detect gravitational waves from supermassive black holes and many other sources. We’ve just seen our first event using a new type of astronomy, and can now test black holes and gravity like never before.

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

2016_02_gravitationalwaves.en

Caption: Observation of Gravitational Waves from a Binary Black Hole Merger B. P. Abbott et al., (LIGO Scientific Collaboration and Virgo Collaboration), Physical Review Letters 116, 061102 (2016). This figure shows the data (top panels) at the Washington and Louisiana LIGO stations, the predicted signal from Einstein’s theory (middle panels), and the inferred signals (bottom panels). The signals matched perfectly in both detectors. Click for a larger view.

About NASA Space Place

With articles, activities, crafts, games, and lesson plans, NASA Space Place encourages everyone to get excited about science and technology. Visit spaceplace.nasa.gov (facebook|twitter) to explore space and Earth science!

NASA Space Place – No Surprise! Earth’s Strongest Gravity Lies Atop The Highest Mountains

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in April, 2014.

By Dr. Ethan Siegel

2013february2_spaceplacePut more mass beneath your feet and feel the downward acceleration due to gravity increase. Newton’s law of universal gravitation may have been superseded by Einstein’s, but it still describes the gravitational force and acceleration here on Earth to remarkable precision. The acceleration you experience is directly proportional to the amount of mass you “see,” but inversely proportional to the distance from you to that mass squared.

The denser the mass beneath your feet, the stronger the gravitational force, and when you are closer to such a mass, the force is even greater. At higher elevations or even higher altitudes, you’d expect your gravitational force to drop as you move farther from Earth’s center. You’d probably also expect that downward acceleration to be greater if you stood atop a large mountain than if you flew tens of thousands of feet above a flat ocean, with nothing but ultra-light air and liquid water beneath you for all those miles. In fact this is true, but not just due to the mountain’s extra mass!

Earth is built like a layer-cake, with the less dense atmosphere, ocean, and crust floating atop the denser mantle, which in turn floats atop the outer and inner cores of our planet. An iceberg’s buoyancy is enough to lift only about one tenth of it above the sea, with the other nine tenths below the surface. Similarly, each and every mountain range has a corresponding “invisible mountain” that dips deep into the mantle. Beneath the ocean floor, Earth’s crust might be only three to six miles thick, but it can exceed 40 miles in thickness around major mountain ranges like the Himalayas and the Andes. It’s where one of Earth’s tectonic plates subducts beneath another that we see the largest gravitational anomalies: another confirmation of the theory of continental drift.

A combination of instruments aboard NASA’s Gravity Recovery and Climate Experiment (GRACE) satellites, including the SuperSTAR accelerometer, the K-band ranging system and the onboard GPS receiver, have enabled the construction of the most accurate map of Earth’s gravitational field ever: to accelerations of nanometers per second squared. While the mountaintops may be farther from Earth’s center than any other point, the extra mass of the mountains and their roots – minus the mass of the displaced mantle – accounts for the true gravitational accelerations we actually see. It’s only by the grace of these satellites that we can measure this to such accuracy and confirm what was first conjectured in the 1800s: that the full layer-cake structure of Earth must be accounted for to explain the gravity we experience on our world!

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

2015june16_grace_en

Image credit: NASA / GRACE mission / Christoph Reigber, et al. (2005): An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S, Journal of Geodynamics 39(1),1–10. Reds indicate greater gravitational anomalies; blues are smaller ones.

About NASA Space Place

The goal of the NASA Space Place is “to inform, inspire, and involve children in the excitement of science, technology, and space exploration.” More information is available at their website: http://spaceplace.nasa.gov/

NASA Space Place – Droughts, Floods and the Earth’s Gravity, by the GRACE of NASA

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in August, 2014.

By Dr. Ethan Siegel

2013february2_spaceplaceWhen you think about gravitation here on Earth, you very likely think about how constant it is, at 9.8 m/s2 (32 ft/ss2). Only, that’s not quite right. Depending on how thick the Earth’s crust is, whether you’re slightly closer to or farther from the Earth’s center, or what the density of the material beneath you is, you’ll experience slight variations in Earth’s gravity as large as 0.2%, something you’d need to account for if you were a pendulum-clock-maker.

But surprisingly, the amount of water content stored on land in the Earth actually changes the gravity field of where you are by a significant, measurable amount. Over land, water is stored in lakes, rivers, aquifers, soil moisture, snow and glaciers. Even a change of just a few centimeters in the water table of an area can be clearly discerned by our best space-borne mission: NASA’s twin Gravity Recovery and Climate Experiment (GRACE) satellites.

Since its 2002 launch, GRACE has seen the water-table-equivalent of the United States (and the rest of the world) change significantly over that time. Groundwater supplies are vital for agriculture and provide half of the world’s drinking water. Yet GRACE has seen California’s central valley and the southern high plains rapidly deplete their groundwater reserves, endangering a significant portion of the nation’s food supply. Meanwhile, the upper Missouri River Basin—recently home to severe flooding—continues to see its water table rise.

NASA’s GRACE satellites are the only pieces of equipment currently capable of making these global, precision measurements, providing our best knowledge for mitigating these terrestrial changes. Thanks to GRACE, we’ve been able to quantify the water loss of the Colorado River Basin (65 cubic kilometers), add months to the lead-time water managers have for flood prediction, and better predict the impacts of droughts worldwide. As NASA scientist Matthew Rodell says, “[W]ithout GRACE we would have no routine, global measurements of changes in groundwater availability. Other satellites can’t do it, and ground-based monitoring is inadequate.” Even though the GRACE satellites are nearing the end of their lives, the GRACE Follow-On satellites will be launched in 2017, providing us with this valuable data far into the future. Although the climate is surely changing, it’s water availability, not sea level rise, that’s the largest near-term danger, and the most important aspect we can work to understand!

Learn more about NASA’s GRACE mission here: www.nasa.gov/mission_pages/Grace/

Kids can learn all about launching objects into Earth’s orbit by shooting a (digital) cannonball on NASA’s Space Place website. Check it out at: spaceplace.nasa.gov/how-orbits-work/

2014august19_grace1

Caption: Image credit: NASA Earth Observatory image by Jesse Allen, using GRACE data provide courtesy of Jay Famigleitti, University of California Irvine and Matthew Rodell, NASA Goddard Space Flight Center. Caption by Holli Riebeek.

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

About NASA Space Place

The goal of the NASA Space Place is “to inform, inspire, and involve children in the excitement of science, technology, and space exploration.” More information is available at their website: http://spaceplace.nasa.gov/

NASA Space Place – High-Energy Spy

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in June, 2013.

By Dr. Martin C. Weisskopf

2013february2_spaceplaceThe idea for the Chandra X-Ray Observatory was born only one year after Riccardo Giacconi discovered the first celestial X-ray source other than the Sun. In 1962, he used a sounding rocket to place the experiment above the atmosphere for a few minutes. The sounding rocket was necessary because the atmosphere blocks X-rays. If you want to look at X-ray emissions from objects like stars, galaxies, and clusters of galaxies, your instrument must get above the atmosphere.

Giacconi’s idea was to launch a large diameter (about 1 meter) telescope to bring X-rays to a focus. He wanted to investigate the hazy glow of X-rays that could be seen from all directions throughout the sounding rocket flight. He wanted to find out whether this glow was, in fact, made up of many point-like objects. That is, was the glow actually from millions of X-ray sources in the Universe. Except for the brightest sources from nearby neighbors, the rocket instrument could not distinguish objects within the glow.

Giacconi’s vision and the promise and importance of X-ray astronomy was borne out by many sounding rocket flights and, later satellite experiments, all of which provided years-, as opposed to minutes-, worth of data.

By 1980, we knew that X-ray sources exist within all classes of astronomical objects. In many cases, this discovery was completely unexpected. For example, that first source turned out to be a very small star in a binary system with a more normal star. The vast amount of energy needed to produce the X-rays was provided by gravity, which, because of the small star’s mass (about equal to the Sun’s) and compactness (about 10 km in diameter) would accelerate particles transferred from the normal star to X-ray emitting energies. In 1962, who knew such compact stars (in this case a neutron star) even existed, much less this energy transfer mechanism?

X-ray astronomy grew in importance to the fields of astronomy and astrophysics. The National Academy of Sciences, as part of its “Decadal Survey” released in 1981, recommended as its number one priority for large missions an X-ray observatory along the lines that Giacconi outlined in 1963. This observatory was eventually realized as the Chandra X-Ray Observatory, which launched in 1999.

The Chandra Project is built around a high-resolution X-ray telescope capable of sharply focusing X-rays onto two different X-ray-sensitive cameras. The focusing ability is of the caliber such that one could resolve an X-ray emitting dime at a distance of about 5 kilometers!

The building of this major scientific observatory has many stories.

2013june11_DEML50

Caption: Composite image of DEM L50, a so-called superbubble found in the Large Magellanic Cloud. X-ray data from Chandra is pink, while optical data is red, green, and blue. Superbubbles are created by winds from massive stars and the shock waves produced when the stars explode as supernovas.

Learn more about Chandra at www.science.nasa.gov/missions/chandra. Take kids on a “Trip to the Land of the Magic Windows” and see the universe in X-rays and other invisible wavelengths of light at spaceplace.nasa.gov/magic-windows.

Dr. Weisskopf is project scientist for NASA’s Chandra X-ray Observatory. This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

About NASA Space Place

The goal of the NASA Space Place is “to inform, inspire, and involve children in the excitement of science, technology, and space exploration.” More information is available at their website: http://spaceplace.nasa.gov/