Tag Archives: Kepler Spacecraft

NASA News Digest: Space Science For 30 March – 4 May 2016

Greetings fellow astrophiles,

The NASA News Service provides up-to-date announcements of NASA policy, news events, and space science. A recent selection of space science articles are provided below, including direct links to the full announcements. Those interested in receiving these announcements from NASA can subscribe to their service by sending an email to: hqnews-request@newsletters.nasa.gov?subject=subscribe

NASA’s Spitzer Maps Climate Patterns On A Super-Earth

RELEASE 16-040 (Click here for the full article) – 30 March 2016

55cnce_animated_frameskipObservations from NASA’s Spitzer Space Telescope have led to the first temperature map of a super-Earth planet — a rocky planet nearly two times as big as ours. The map reveals extreme temperature swings from one side of the planet to the other, and hints that a possible reason for this is the presence of lava flows.

“Our view of this planet keeps evolving,” said Brice Olivier Demory of the University of Cambridge, England, lead author of a new report appearing in the March 30 issue of the journal Nature. “The latest findings tell us the planet has hot nights and significantly hotter days. This indicates the planet inefficiently transports heat around the planet. We propose this could be explained by an atmosphere that would exist only on the day side of the planet, or by lava flows at the planet surface.”

The toasty super-Earth 55 Cancri e is relatively close to Earth at 40 light-years away. It orbits very close to its star, whipping around it every 18 hours. Because of the planet’s proximity to the star, it is tidally locked by gravity just as our moon is to Earth. That means one side of 55 Cancri, referred to as the day side, is always cooking under the intense heat of its star, while the night side remains in the dark and is much cooler.

For more information about Spitzer, visit: www.nasa.gov/spitzer

NASA To Attach, Test First Expandable Habitat On International Space Station

RELEASE M16-039 (Click here for the full article) – 12 April 2016

beam_berthed_to_iss_aft_port_node_3_concept_art_b_003The first human-rated expandable structure that may help inform the design of deep space habitats is set to be installed to the International Space Station Saturday, April 16. NASA Television coverage of the installation will begin at 5:30 a.m. EDT.

The Bigelow Expandable Activity Module (BEAM) will be attached to the station’s Tranquility module over a period of about four hours. Controllers in mission control at NASA’s Johnson Space Center in Houston will remove BEAM from the unpressurized trunk of SpaceX’s Dragon spacecraft, using the robotic Canadarm2, and move it into position next to Tranquility’s aft assembly port. NASA astronauts aboard the station will secure BEAM using common berthing mechanism controls. Robotic operations begin at 2:15 a.m. and are expected to be complete by 6:15 a.m.

BEAM launched aboard Dragon on April 8 from Cape Canaveral Air Force Station in Florida. At the end of May, the module will be expanded to nearly five times its compressed size of 7 feet in diameter by 8 feet in length to roughly 10 feet in diameter and 13 feet in length.

For coverage times and to watch the BEAM installation live, visit: www.nasa.gov/nasatv

For more information about BEAM, visit: www.nasa.gov/beam

For more information about the International Space Station, visit: www.nasa.gov/station

NASA Works To Improve Solar Electric Propulsion For Deep Space Exploration

RELEASE 16-044 (Click here for the full article) – 19 April 2016

sep_contract_award_pr_image_screen_shot_2014-12-12_at_3_11_53_pmNASA has selected Aerojet Rocketdyne, Inc. of Redmond, Washington, to design and develop an advanced electric propulsion system that will significantly advance the nation’s commercial space capabilities, and enable deep space exploration missions, including the robotic portion of NASA’s Asteroid Redirect Mission (ARM) and its Journey to Mars.

The Advanced Electric Propulsion System (AEPS) contract is a 36-month cost-plus-fixed-fee contract with a performance incentive and total value of $67 million. Work performed under the contract could potentially increase spaceflight transportation fuel efficiency by 10 times over current chemical propulsion technology and more than double thrust capability compared to current electric propulsion systems.

“Through this contract, NASA will be developing advanced electric propulsion elements for initial spaceflight applications, which will pave the way for an advanced solar electric propulsion demonstration mission by the end of the decade,” said Steve Jurczyk, associate administrator of NASA’s Space Technology Mission Directorate (STMD) in Washington. “Development of this technology will advance our future in-space transportation capability for a variety of NASA deep space human and robotic exploration missions, as well as private commercial space missions.”

For more information about NASA technology, visit: www.nasa.gov/technology

NASA To Provide Coverage Of May 9 Mercury Transit Of The Sun

RELEASE M16-050 (Click here for the full article) – 3 May 2016

NASA is inviting media and viewers around the world to see a relatively rare celestial event, with coverage of the Monday, May 9 transit of the sun by the planet Mercury. Media may view the event at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

Agency scientists will be available at the Goddard viewing event for live media interviews from 6 to 11:30 a.m. EDT. To attend, media must contact Michelle Handleman. To schedule an interview with a NASA scientist at the event, contact Claire Saravia.

Mercury passes between Earth and the sun only about 13 times a century, its last trek taking place in 2006. Due to its diminutive size, viewing this event safely requires a telescope or high-powered binoculars fitted with solar filters made of specially-coated glass or Mylar.

NASA is offering several avenues for the public to view the event without specialized and costly equipment, including images on NASA.gov, a one-hour NASA Television special, and social media coverage.

To view a NASA ScienceCast video on the rare opportunity the Mercury transit poses for professional astronomers and backyard sky watchers alike, go to: youtu.be/Gibaxh9x7O0

Images and animations for b-roll are available through NASA’s Scientific Visualization Studio at: go.nasa.gov/1X51Duz

For fast facts about Mercury, and more information on the 2016 transit of the sun, visit: www.nasa.gov/transit

NASA To Announce Latest Kepler Discoveries During Media Teleconference

RELEASE M16-051 (Click here for the full article) – 4 May 2016

NASA is inviting media and viewers around the world to see a relatively rare celestial event, with coverage of the Monday, May 9 transit of the sun by the planet Mercury. Media may view the event at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

lithoartkepler2-fullNASA will host a news teleconference at 1 p.m. EDT Tuesday, May 10 to announce the latest discoveries made by its planet-hunting mission, the Kepler Space Telescope.

The briefing participants are:

* Paul Hertz, Astrophysics Division director at NASA Headquarters in Washington
* Timothy Morton, associate research scholar at Princeton University in New Jersey
* Natalie Batalha, Kepler mission scientist at NASA’s Ames Research Center in Moffett Field, California
* Charlie Sobeck, Kepler/K2 mission manager at Ames

For dial-in information, media must e-mail their name, affiliation and telephone number to Felicia Chou at felicia.chou@nasa.gov no later than 11 a.m. Tuesday. Questions can be submitted on Twitter during the teleconference using the hashtag #askNASA.

The teleconference audio and visuals will be streamed live at: www.nasa.gov/newsaudio

For more information about NASA’s Kepler mission, visit: www.nasa.gov/kepler

NASA Space Place – Our Solar System Is Almost Normal, But Not Quite

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in November, 2015.

By Dr. Ethan Siegel

2013february2_spaceplaceIt was just over 20 years ago that the very first exoplanet was found and confirmed to be orbiting a star not so different from our own sun. Fast forward to the present day, and the stellar wobble method, wherein the gravitational tug of a planet perturbs a star’s motion, has been surpassed in success by the transit method, wherein a planet transits across the disk of its parent star, blocking a portion of its light in a periodic fashion. Thanks to these methods and NASA’s Kepler spacecraft, we’ve identified many thousands of candidate planets, with nearly 2,000 of them having been confirmed, and their masses and densities measured.

The gas giants found in our solar system actually turn out to be remarkably typical: Jupiter-mass planets are very common, with less-massive and more-massive giants both extremely common. Saturn—the least dense world in our solar system—is actually of a fairly typical density for a gas giant world. It turns out that there are many planets out there with Saturn’s density or less. The rocky worlds are a little harder to quantify, because our methods and missions are much better at finding higher-mass planets than low-mass ones. Nevertheless, the lowest mass planets found are comparable to Earth and Venus, and range from just as dense to slightly less dense. We also find that we fall right into the middle of the “bell curve” for how old planetary systems are: we’re definitely typical in that regard.

But there are a few big surprises, which is to say there are three major ways our solar system is an outlier among the planets we’ve observed:

• All our solar system’s planets are significantly farther out than the average distance for exoplanets around their stars. More than half of the planets we’ve discovered are closer to their star than Mercury is to ours, which might be a selection effect (closer planets are easier to find), but it might indicate a way our star is unusual: being devoid of very close-in planets.

• All eight of our solar system’s planets’ orbits are highly circular, with even the eccentric Mars and Mercury only having a few percent deviation from a perfect circle. But most exoplanets have significant eccentricities, which could indicate something unusual about us.

• And finally, one of the most common classes of exoplanet—a super-Earth or mini-Neptune, with 1.5-to-10 times the mass of Earth—is completely missing from our solar system.

Until we develop the technology to probe for lower-mass planets at even greater distances around other star systems, we won’t truly know for certain how unusual we really are!

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

923f2b1d-ef0c-4396-b85f-d2e0b2dd5253

Caption: NASA / Kepler Dan Fabricky (L), of a selection of the known Kepler exoplanets; Rebecca G. Martin and Mario Livio (2015) ApJ 810, 105 (R), of 287 confirmed exoplanets relative to our eight solar system planets.

About NASA Space Place

With articles, activities, crafts, games, and lesson plans, NASA Space Place encourages everyone to get excited about science and technology. Visit spaceplace.nasa.gov (facebook|twitter) to explore space and Earth science!