Tag Archives: Large Magellanic Cloud

Free Astronomy Magazine – November-December 2019 Issue Available For Reading And Download

Greetings, fellow astrophiles!

The most recent issue of Free Astronomy Magazine (November-December 2019) is available for your reading and downloading pleasure at www.astropublishing.com (click the link to go directly to the issue).

As editor-in-chief Michele Ferrara alludes to early in his “flexible concept” article on page 38, there’s been quite the transition into the study of exoplanets and the potentials for habitability as a way to more credibly have the discussion about alien life. His article on page 22 is worth the read for those who think it’s not a question of “if” but of “how often?”

Free Astronomy Magazine (website, facebook) was featured as the first of a series of articles on great free online content for amateur astronomers (see A Universe Of Free Resources Part 1) and we’ll be keeping track of future publications under the Online Resources category on the CNYO website.

You can find previous Free Astronomy Magazine issues by checking out our Free Astronomy Magazine Category (or look under the Education link in our menu).

For those wanting a quick look at what the issue has to offer, the Table of Contents is reproduced below.


November-December 2019

The web browser-readable version of the issue can be found here:

November-December 2019 – www.astropublishing.com/6FAM2019/

For those who want to jump right to the PDF download (20 MB), Click here:

November-December 2019

Free Astronomy Magazine – May-June 2017 Issue Available For Reading And Download

Greetings, fellow astrophiles!

The most recent issue of Free Astronomy Magazine (May-June, 2017) is available for your reading and downloading pleasure at www.astropublishing.com (click the link to go directly to the issue).

Free Astronomy Magazine was featured as the first of a series of articles on great free online content for amateur astronomers (see A Universe Of Free Resources Part 1) and we’ll be keeping track of future publications under the Online Resources category on the CNYO website.

You can find previous Free Astronomy Magazine issues by checking out our Free Astronomy Magazine Category (or look under the Education link in our menu).

For those wanting a quick look at what the issue has to offer, the Table of Contents is reproduced below.

May-June 2017

The web browser-readable version of the issue can be found here:

May-June 2017 – www.astropublishing.com/3FAM2017/

For those who want to jump right to the PDF download (27 MB), Click here: May-June 2017

NASA Space Place – Is the Most Massive Star Still Alive?

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in April, 2015.

By Dr. Ethan Siegel

2013february2_spaceplaceThe brilliant specks of light twinkling in the night sky, with more and more visible under darker skies and with larger telescope apertures, each have their own story to tell. In general, a star’s color correlates very well with its mass and its total lifetime, with the bluest stars representing the hottest, most massive and shortest-lived stars in the universe. Even though they contain the most fuel overall, their cores achieve incredibly high temperatures, meaning they burn through their fuel the fastest, in only a few million years instead of roughly ten billion like our sun.

Because of this, it’s only the youngest of all star clusters that contain the hottest, bluest stars, and so if we want to find the most massive stars in the universe, we have to look to the largest regions of space that are actively forming them right now. In our local group of galaxies, that region doesn’t belong to the giants, the Milky Way or Andromeda, but to the Large Magellanic Cloud (LMC), a small, satellite galaxy (and fourth-largest in the local group) located 170,000 light years distant.

Despite containing only one percent of the mass of our galaxy, the LMC contains the Tarantula Nebula (30 Doradus), a star-forming nebula approximately 1,000 light years in size, or roughly seven percent of the galaxy itself. You’ll have to be south of the Tropic of Cancer to observe it, but if you can locate it, its center contains the super star cluster NGC 2070, holding more than 500,000 unique stars, including many hundreds of spectacular, bright blue ones. With a maximum age of two million years, the stars in this cluster are some of the youngest and most massive ever found.

At the center of NGC 2070 is a very compact concentration of stars known as R136, which is responsible for most of the light illuminating the entire Tarantula Nebula. Consisting of no less than 72 O-class and Wolf-Rayet stars within just 20 arc seconds of one another, the most massive is R136a1, with 260 times the sun’s mass and a luminosity that outshines us by a factor of seven million. Since the light has to travel 170,000 light years to reach us, it’s quite possible that this star has already died in a spectacular supernova, and might not even exist any longer! The next time you get a good glimpse of the southern skies, look for the most massive star in the universe, and ponder that it might not even still be alive.

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

2015april17_massivestar.en

Caption: Images credit: ESO/IDA/Danish 1.5 m/R. Gendler, C. C. Thöne, C. Féron, and J.-E. Ovaldsen (L), of the giant star-forming Tarantula Nebula in the Large Magellanic Cloud; NASA, ESA, and E. Sabbi (ESA/STScI), with acknowledgment to R. O’Connell (University of Virginia) and the Wide Field Camera 3 Science Oversight Committee (R), of the central merging star cluster NGC 2070, containing the enormous R136a1 at the center.

About NASA Space Place

The goal of the NASA Space Place is “to inform, inspire, and involve children in the excitement of science, technology, and space exploration.” More information is available at their website: http://spaceplace.nasa.gov/

NASA Space Place – Size Does Matter, But So Does Dark Energy

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in August, 2013.

By Dr. Ethan Siegel

2013february2_spaceplaceHere in our own galactic backyard, the Milky Way contains some 200-400 billion stars, and that’s not even the biggest galaxy in our own local group. Andromeda (M31) is even bigger and more massive than we are, made up of around a trillion stars! When you throw in the Triangulum Galaxy (M33), the Large and Small Magellanic Clouds, and the dozens of dwarf galaxies and hundreds of globular clusters gravitationally bound to us and our nearest neighbors, our local group sure does seem impressive.

Yet that’s just chicken feed compared to the largest structures in the universe. Giant clusters and superclusters of galaxies, containing thousands of times the mass of our entire local group, can be found omnidirectionally with telescope surveys. Perhaps the two most famous examples are the nearby Virgo Cluster and the somewhat more distant Coma Supercluster, the latter containing more than 3,000 galaxies. There are millions of giant clusters like this in our observable universe, and the gravitational forces at play are absolutely tremendous: there are literally quadrillions of times the mass of our Sun in these systems.

The largest superclusters line up along filaments, forming a great cosmic web of structure with huge intergalactic voids in between the galaxy-rich regions. These galaxy filaments span anywhere from hundreds of millions of light-years all the way up to more than a billion light years in length. The CfA2 Great Wall, the Sloan Great Wall, and most recently, the Huge-LQG (Large Quasar Group) are the largest known ones, with the Huge-LQG — a group of at least 73 quasars – apparently stretching nearly 4 billion light years in its longest direction: more than 5% of the observable universe! With more mass than a million Milky Way galaxies in there, this structure is a puzzle for cosmology.

You see, with the normal matter, dark matter, and dark energy in our universe, there’s an upper limit to the size of gravitationally bound filaments that should form. The Huge-LQG, if real, is more than double the size of that largest predicted structure, and this could cast doubts on the core principle of cosmology: that on the largest scales, the universe is roughly uniform everywhere. But this might not pose a problem at all, thanks to an unlikely culprit: dark energy. Just as the local group is part of the Virgo Supercluster but recedes from it, and the Leo Cluster — a large member of the Coma Supercluster — is accelerating away from Coma, it’s conceivable that the Huge-LQG isn’t a single, bound structure at all, but will eventually be driven apart by dark energy. Either way, we’re just a tiny drop in the vast cosmic ocean, on the outskirts of its rich, yet barely fathomable depths.

Learn about the many ways in which NASA strives to uncover the mysteries of the universe: science.nasa.gov/astrophysics/. Kids can make their own clusters of galaxies by checking out The Space Place’s fun galactic mobile activity: spaceplace.nasa.gov/galactic-mobile/

2013august13_comasupercluster

Caption: Digital mosaic of infrared light (courtesy of Spitzer) and visible light (SDSS) of the Coma Cluster, the largest member of the Coma Supercluster. Image credit: NASA / JPL-Caltech / Goddard Space Flight Center / Sloan Digital Sky Survey.

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

About NASA Space Place

The goal of the NASA Space Place is “to inform, inspire, and involve children in the excitement of science, technology, and space exploration.” More information is available at their website: http://spaceplace.nasa.gov/