Tag Archives: Venus

Bob Piekiel Hosts “Star Search!” At Green Lakes State Park – July 26 (27 alt.)

Greetings fellow astrophiles!

I’m happy to announce that Bob Piekiel will be hosting a free observing session at Green Lakes State Park on Friday, July 26th (with the 27th as a weather-alternate). Any interested CNYO scope owners planning on attending (with their scopes, that is) please drop me a line at observing@cnyo.org for the head count (will remind by email before the event). Everyone else, just show up!


View Larger Map

The night’s observing feast includes Venus in the early evening, Neptune 1/2 hour before the Moon rises at 11:00 p.m., and Saturn, our prize object for the year, visible throughout. Clear skies pending, it is possible we might even see some of the early part of the Delta Aquarid meteor shower. Additional details are available in the flyer below (click for a full-sized image for printing and distributing).

2013june11_Green_Lakes_Astronomy_Flyer

NASA Space Place – Triple Treat

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in May, 2013.

By Dr. Ethan Siegel

2013february2_spaceplaceThe solar system is a busy place, with five wandering planets visible to the naked eye alone. When any two pass close by each other from our point of view, we see an astronomical conjunction, but on very rare occasions, three planets will find themselves grouped together: a triple conjunction. Towards the end of May, Mercury, Venus and Jupiter will treat us to the best triple conjunction in years.

On May 25th, Mercury will pass within 1.4° of Venus, then two days later Mercury comes within 2.4° of Jupiter, and finally on the 28th, Jupiter and Venus approach within 1° of one another. If it weren’t for the slight orbital tilt of our solar system’s planetary orbits, these conjunctions would all be occultations instead. During the nights of May 26th-27th, all three planets are visible immediately after sunset within the same 3° field of view, with the triple conjunction peaking in a triangular shape on the 26th. (For scale, the full Moon subtends about 1/2°.) The three planets appear close together for a few days more, making a line in the sky on the 30th/31st.

How does this happen? Mercury and Venus race around the Sun far faster than Earth, with Mercury completing more than four revolutions around the Sun for each one that Earth makes. At the same time, Jupiter is far slower, taking 12 years to orbit just once around the Sun. Jupiter’s been high in the sky during the early parts of the night, but steadily lowers throughout May as Earth continues to move away from it, approaching its maximum distance from Earth. Mercury and Venus, meanwhile, begin to move out from behind the Sun during May: Venus at the beginning of the month and Mercury in the middle.

Thus, during this triple conjunction, all three planets will be on the far side of the Sun, something that happens just 25% of the time in triple conjunctions involving Mercury and Venus! If you telescopically resolve these planets into disks, you’ll see our inner worlds in a nearly-full gibbous phase. Jupiter will appear largest in terms of angular diameter, followed by Venus and lastly by Mercury. Just a year ago, during its now-famous transit, Venus took up more than a full arc-minute in the sky; during this conjunction, it will just one-sixth that angular size and less than a third the apparent diameter of Jupiter. Nevertheless, Venus will still be more than six times as bright as Jupiter during this time, outshining all night-sky objects other than the Moon. Closer conjunctions of two naked-eye planets are frequent, but getting three or more like this happens just once or twice per decade, so don’t miss your chance to see it.

And speaking of occultations, The Space Place has a great kid-friendly explanation of the Venus transit and solar eclipses of 2012 at spaceplace.nasa.gov/venus-transit.

Dr. Ethan Siegel, a theoretical astrophysicist, is a professor at the University of Portland (OR) and Lewis & Clark College.

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

2013may20_planetalignment2

Caption: The image shows the configuration of Mercury, Venus, and Jupiter in the western sky just after sunset on May 26, 2013. Insets show the relative size appearance of the planets on that date.

About NASA Space Place

The goal of the NASA Space Place is “to inform, inspire, and involve children in the excitement of science, technology, and space exploration.” More information is available at their website: http://spaceplace.nasa.gov/

CNYO Observing Log: Beaver Lake Nature Center, 2 May 2013

2013may2_beaverlakebanner_v2

Greetings fellow astrophiles,

May 2nd served as the rain date (due to rapidly-overcasting conditions on April 25th) for our first Beaver Lake Nature Center lecture of the year – The Guiding & Wandering Stars – Key Northern Constellations & Planet Observations. On hand to run scopes and engage in lecture duties were the author with a 12.5″ New Moon Telescope Dobsonian, Larry Slosberg with one Meade SCT and Bob Piekiel with another.

The Constellations have been with us for thousands of years, but there are only a few good, clear nights each month to memorize their positions as they slowly move across the sky! This outdoor lecture by the CNY Observers (www.cnyo.org) will briefly describe the history and importance of the Constellations as mythological, agricultural, and navigational guides, then will describe a simple system to begin to learn their relative positions. At the same time, Jupiter and Saturn are on opposite sides of the Southern sky, making excellent targets for binocular and telescope observing. Free and open to the public.

While the week including May 2nd will be known to some as a particularly bad week for maple tree allergies, the nighttime sky stayed quite clear and the bugs eventually froze around us to produce an excellent session. The attending crowd of about 35 served as test subjects for both our two new brochures (How The Night Sky Moves and Guide For New Observers) and our first official completely outdoors (Powerpoint-free) lecture (which, despite astronomy being such a visual hobby, worked will with just the brochure contents). In anticipation of some nighttime brochure reading, I put together some red light flashlights on the cheap locally. For anyone attempting similar, I found a four-pack of Dorcy AAA 6 LED Flashlights at Dicks Sporting Goods for $10. Some very minor surgery is needed to remove the top caps, but conversion to red light flashlights is straightforward with the help of a four-layer stack of red acetate purchased many moons ago from Commercial Art Supply in Syracuse.

406px-EB1711_Armillary_SphereDespite a little confusion about the start time (7:30 or 8:00), everyone had pulled in by 7:45 p.m., so we began the session with a good 30 minutes of physics. The goal of these Beaver Lake lectures is to not only observe objects, but to explain why the sky moves as it does so those trying to learn new constellations will understand what to expect both over the course of a night and over the course of a year. This began at the ground floor – understanding how the Earth moves around the Sun. With the help of an armillary sphere (which holds the Earth at its 23 degree tilt – see the image at left from wikipedia), the Earth’s movement around the Sun was demonstrated, specifically showing that the rotation axis stays pointed the same way as we revolve – thus resulting in Polaris appearing not to move over the course of the year despite the Earth shifting position by 300 million kilometers (2 astronomical units) every 6 months. Knowing that Polaris is always in the same place in the sky (whether it’s daytime or not) leads smoothly into a discussion of the circumpolar constellations and the benefit of learning these six constellations first (for this discussion and some how-to’s, I refer you to the CNYO brochure: Guide For New Observers).

Running a sunset-to-late-night session with a non-cycling crowd has (at least) two distinct advantages. First, the importance of dark adaption and the need to avoid smart phones (or avoid their use around others) can be stressed early in the evening. While enforcing protocols to maintain dark adaption at any kind of public lecture is usually a losing battle, anyone answering a phone did it in a very non-obvious manner, which was most welcome. Second, the mechanics of my Dobsonian telescope and Larry and Bob’s two motorized SCTs could be presented while still visible to attendees. More importantly, the proper observing technique for all could be demonstrated by showing (a) how to approach an eyepiece (I tell people to put their hands behind their back and simply lean into the eyepiece) and (b) just how easy it is to nudge a scope away from its target. Specifically for the Dob, I’m sure anyone who’s brought their scope to a public session has had at least one person lean on or pull closer an eyepiece. I’m pleased to report that, once the observing started, our collective intro to scope workings made my Dob-running life simple with no unplanned re-adjustments (just adjustments of the unmotorized kind).

As stated in a previous post (2013 March 8 – At The Syracuse Inner Harbor), new observers are best introduced to observing with easy objects that don’t require training. Deep, dim, distant galaxies are not useful starters for someone with no background in eyepiece observing. For my part, a good 70 minutes were spent on Jupiter (low in the Western Sky with all four Galilean moons present), Saturn (low in the Eastern Sky and my first view of it this year), Arcturus in Boötes (its shimmering in the sky both with and without magnification was a point of discussion for several near my scope), M13 (the globular cluster in Hercules, which served as a first “way out” object and an example of using the constellations as a “coarse adjustment” for finding Messier and other objects), and the pair Alcor and Mizar in the handle of the Big Dipper/tail of Ursa Major (to show the separation and additional detail that comes with magnification).

With a much smaller crowd around 9:30 p.m., I did treat a few interested parties to some more difficult observing in my scope – The Leo Triplet – after first briefly explaining the mechanics of averted vision. Of the five people who looked, all could make out M65, all could at least tell that something “was there” where M66 rested, and three people could tell that “something else” was there at NGC 3628‘s position. And I did miss a golden opportunity to observe NGC 4565 (my personal favorite) in Coma Berenices.

We closed up shop at 10 p.m., just as Cygnus and Lyra began to peak out over the horizon and announce the approaching return of our Summer Constellations. I am pleased to report that we will be hosting a Summer Session on Thursday, August 8th (with an August 15th rain date) where we will again do a little bit of mechanics and instruction outdoors, followed by Saturn, Venus, and all that our summer view of the Milky Way can provide.

August 8 – Stargazing with CNY Observers & Observing

CNY Observers (CNYO) hosts an introductory lecture to the Night Sky, focusing on planets and other objects observable during August and September.  Part of the lecture will discuss some simple ways to learn the Constellations, while the rest of the lecture will provide details about meteor showers, observing satellites and the ISS, and the ever-expanding description of our own Solar System.  If time and weather permits, some early evening views of Venus and Saturn will be had from the Beaver Lake parking lot.  Free for members; $2 for nonmembers.

NASA Space Place – Doing Science with a Spacecraft’s Signal

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in October, 2012.

By David Doody

2013february2_spaceplaceMariner 2 to Venus, the first interplanetary flight, was launched August 27 fifty years ago. This was a time when scientists were first learning that Venus might not harbor jungles under its thick atmosphere after all. A Russian scientist had discovered that atmosphere during the rare Venus transit of 1761, because of the effects of sunlight from behind.

Mariner 2 proved interplanetary flight was possible, and our ability to take close-up images of other planets would be richly rewarding in scientific return. But it also meant we could use the spacecraft itself as a “light” source, planting it behind an object of our choosing and making direct measurements.

Mariner 4 did the first occultation experiment of this sort when it passed behind Mars as seen from Earth in July 1965. But, instead of visible light from the Sun, this occultation experiment used the spacecraft’s approximately 2-GHz radio signal.

The Mariner 4 experiment revealed Mars’ thin atmosphere. Since then, successful radio science occultation experiments have been conducted at every planet and many large moons. And another one is on schedule to investigate Pluto and its companion Charon, when the New Horizons spacecraft flies by in July 2015. Also, during that flyby, a different kind of radio science experiment will investigate the gravitational field.

The most recent radio science occultation experiment took place September 2, 2012, when the Cassini spacecraft carried its three transmitters behind Saturn. These three different frequencies are all kept precisely “in tune” with one another, based on a reference frequency sent from Earth. Compared to observations of the free space for calibration just before ingress to occultation, the experiment makes it possible to tease out a wide variety of components in Saturn’s ionosphere and atmosphere.

Occultation experiments comprise only one of many categories of radio science experiments. Others include tests of General Relativity, studying the solar corona, mapping gravity fields, determining mass, and more. They all rely on NASA’s Deep Space Network to capture the signals, which are then archived and studied.

Find out more about spacecraft science experiments in “Basics of Space Flight,” a website and book by this author, www2.jpl.nasa.gov/basics. Kids can learn all about NASA’s Deep Space Network by playing the “Uplink-Downlink” game at spaceplace.nasa.gov/dsn-game.

2013february2_mariner4posterart_full

Caption: In this poster art of Mariner 4, you can see the parabolic reflector atop the spacecraft bus. Like the reflector inside a flashlight, it sends a beam of electromagnetic energy in a particular direction. Credit: NASA/JPL/Corby Waste. Click to see full-size version.

About NASA Space Place

The goal of the NASA Space Place is “to inform, inspire, and involve children in the excitement of science, technology, and space exploration.” More information is available at their website: http://spaceplace.nasa.gov/