Tag Archives: Earth

TACNY Junior Cafe Scientifique: “Stranger Than Fiction: A Journey Through The History Of Life”

Saturday – October 21, 9:30-11:00am

Please RSVP to jrcafe@tacny.org

Milton J Rubenstein Museum of Science & Technology – Syracuse, NY


View Larger Map

Speaker: Emily J. Judd, PhD Candidate, Department of Earth Sciences, Syracuse University

Overview: The Earth is very old – 4.56 billion years old, to be exact. Yet it took about a billion years for life to first appear, and another 3 billion years or so to evolve to the complex forms we see today. Together we will journey through geologic time, from the very beginning of life through to the appearance of humans. We will explore the interactions between organisms and the Earth around them -not only how they’ve adapted to changing environments, but also how they’ve caused changes to the environment, from altering the landscape to oxygenating the atmosphere. Through the lens of the fossil record, we will look at the explosion of complex, multicellular life more than 500 million years ago, the transition from life in the oceans to life on land, the rise (and fall) of dinosaurs, the diversification of mammals, and eventually, the evolution of humans.

Biography: Emily Judd is a PhD candidate in the Department of Earth Sciences at Syracuse University. Before coming to Syracuse, she earned her BS in Geology, with a minor in Philosophy from the Utah Valley University in Orem, Utah. Emily’s primary field of research is paleoclimate, or the reconstruction of ancient climates. Her research focuses on greenhouse climate intervals – times in Earth’s history when there was no ice near the poles, but instead there were palm trees and crocodiles. She looks at chemical signatures in fossils from these warm intervals to investigate how different environments respond to large-scale changes in climate, so that we may be able to better predict those changes in the future. These days, much of Emily’s work involves looking at 50-million year-old clams from Antarctica to assess seasonal changes in temperature and precipitation. When not in the lab, Emily enjoys exploring the great outdoors, be it hiking, mountain biking, or rock climbing, as well as reading, traveling, and spending time with her giant 12-year-old dog.

TACNY Junior Cafe Scientifique

TACNY Junior Cafe Scientifique, a program for middle-school students founded in 2005, features discussions about topics in the fields of science, technology, engineering and mathematics in an informal atmosphere and seeks to encourage students to consider careers in these areas. Students must be accompanied by an adult and can explore the MOST at no cost after the event.

Technology Alliance of Central New York

Founded in 1903 as the Technology Club of Syracuse, the nonprofit Technology Alliance of Central New York’s mission is to facilitate community awareness, appreciation, and education of technology; and to collaborate with like-minded organizations across Central New York.

For more information about TACNY, visit www.tacny.org.

NASA News Digest: Space Science For 9 March – 29 March 2016

Greetings fellow astrophiles,

The NASA News Service provides up-to-date announcements of NASA policy, news events, and space science. A recent selection of space science articles are provided below, including direct links to the full announcements. Those interested in receiving these announcements from NASA can subscribe to their service by sending an email to: hqnews-request@newsletters.nasa.gov?subject=subscribe

NASA Targets May 2018 Launch of Mars InSight Mission

RELEASE 16-026 (Click here for the full article) – 9 March 2016

2016march31__16_026NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission to study the deep interior of Mars is targeting a new launch window that begins May 5, 2018, with a Mars landing scheduled for Nov. 26, 2018.

InSight’s primary goal is to help us understand how rocky planets – including Earth – formed and evolved. The spacecraft had been on track to launch this month until a vacuum leak in its prime science instrument prompted NASA in December to suspend preparations for launch.

InSight project managers recently briefed officials at NASA and France’s space agency, Centre National d’Études Spatiales (CNES), on a path forward; the proposed plan to redesign the science instrument was accepted in support of a 2018 launch.

For addition information about the mission, visit: www.nasa.gov/insight

More information about NASA’s journey to Mars is available online at: www.nasa.gov/journeytomars

NASA Announces Dates for One of World’s Largest Hackathons

RELEASE 16-034 (Click here for the full article) – 23 March 2016

2016march31_space-apps-challenge2NASA’s open innovation incubator, the International Space Apps Challenge, will take place April 22-24. The global main stage for this year’s event will be in Pasadena, California, with local events taking place simultaneously in 193 locations spanning 72 countries.

On April 23 and 24, participants are asked to develop mobile applications, software, hardware, data visualizations and platform solutions that could contribute to space exploration missions and help improve life on Earth.

This year’s challenge will include a Data Bootcamp on April 22, streamed live from the global main stage. The bootcamp is open to the public and will give participants the opportunity to learn new skills with computer coding and data.

“We’re reaching out to women’s organizations influential in the data and maker communities to participate, and we encourage women-led teams in the hackathon,” said Deborah Diaz, chief technology officer for information technology.

A more information about the Space Apps Challenge, and a full list of NASA challenges, go to: spaceappschallenge.org

Follow the challenge on Twitter at: twitter.com/spaceapps

NASA Gets Down to Earth This Year With Globe-Spanning Expeditions

RELEASE 16-039 (Click here for the full article) – 23 March 2016

NASA is sending scientists around the world in 2016 – from the edge of the Greenland ice sheet to the coral reefs of the South Pacific – to delve into challenging questions about how our planet is changing and what impacts humans are having on it.

While Earth science field experiments are nothing new for NASA, the next six months will be a particularly active period with eight major new campaigns taking researchers around the world on a wide range of science investigations. The public is invited to follow this journey of exploration online through NASA’s social media channels and the new Earth Expeditions webpage, which will feature regular video, photos and blog posts from these missions and other ongoing field activities.

“Combining the long-term global view from space with detailed measurements from field experiments is a powerful way of deciphering what’s happening in our world,” said Michael Freilich, director of NASA’s Earth Science Division in Washington. “Scientists worldwide use NASA Earth science field data together with satellite data and computer models to tackle many of today’s environmental challenges and advance our knowledge of how the Earth works as a complex, integrated system.”

To follow all the NASA Earth Expeditions, visit: www.nasa.gov/earthexpeditions

NASA Selects Instrument Team to Build Next-Gen Planet Hunter

RELEASE 16-038 (Click here for the full article) – 29 March 2016

2016march31_16-038_0NASA has selected a team to build a new, cutting-edge instrument that will detect planets outside our solar system, known as exoplanets, by measuring the miniscule “wobbling” of stars. The instrument will be the centerpiece of a new partnership with the National Science Foundation (NSF) called the NASA-NSF Exoplanet Observational Research program, or NN-EXPLORE.

The instrument, named NEID (pronounced “nee-id”), which is short for NN-EXPLORE Exoplanet Investigations with Doppler Spectroscopy, will measure the tiny back-and-forth wobble of a star caused by the gravitational tug of a planet in orbit around it. The wobble tells scientists there is a planet orbiting the star, and the size of the wobble indicates how massive the planet is.

The highly precise instrument, to be built by a Pennsylvania State University research group led by Dr. Suvrath Mahadevan, will be completed in 2019 and installed on the 3.5-meter WIYN telescope at the Kitt Peak National Observatory in Arizona.

For more information, visit: exep.jpl.nasa.gov/NNExplore/

NASA’s ‘Spaceport of the Future’ Reaches Another Milestone

RELEASE 16-037 (Click here for the full article) – 29 March 2016

2016mar31_16-037NASA has completed a major milestone on its journey to Mars and is ready to begin another phase of work on its spaceport of the future, where the next generation of astronauts will launch to Mars and other deep-space destinations.

The agency recently wrapped up a comprehensive and successful review of plans for the facilities and ground support systems that will process the agency’s Space Launch System (SLS) rocket and Orion spacecraft at NASA’s Kennedy Space Center in Florida.

“NASA is developing and modernizing the ground systems at Kennedy to safely integrate Orion with SLS, move the vehicle to the pad, and successfully launch it into space,” said Bill Hill, deputy associate administrator of NASA’s Exploration Systems Development Division at the agency’s Headquarters in Washington. “Modernizing the ground systems for our journey to Mars also ensures long-term sustainability and affordability to meet future needs of the multi-use spaceport.”

For more information on GSDO, visit: www.nasa.gov/groundsystems

For more information on Orion, visit: www.nasa.gov/orion

NASA News Digest: NASA Reaches New Heights in 2015

Greetings fellow astrophiles,

The NASA News Service put together a great summary of a whole lot of amazing, publicly-funded science and engineering that may have started years and years in the past (think New Horizons launch in 2006, which only happened after the team was organized in 2000), but finally came to fruition in 2015 (and what a year it’s been!).

The NASA News Service provides up-to-date announcements of NASA policy, news events, and space science. A recent selection of space science articles are provided below, including direct links to the full announcements. Those interested in receiving these announcements from NASA can subscribe to their service by sending an email to: hqnews-request@newsletters.nasa.gov?subject=subscribe

NASA Reaches New Heights in 2015

RELEASE 15-232 (Click here for the full article) – 21 December 2015

In 2015, NASA explored the expanse of our solar system and beyond, and the complex processes of our home planet, while also advancing the technologies for our journey to Mars, and new aviation systems as the agency reached new milestones aboard the International Space Station.

“It was a fantastic year that brought us even closer to Mars,” said NASA Administrator Charles Bolden. “Our space program welcomed advances from commercial partners who will soon launch astronauts from the United States to the International Space Station, and progress on new technologies and missions to take us into deep space, improve aviation and explore our universe and home planet.”

For more about NASA’s missions, research and discoveries, visit: www.nasa.gov

NASA Space Place – Measure The Moon’s Size And Distance During The Next Lunar Eclipse

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in September, 2015.

By Dr. Ethan Siegel

2013february2_spaceplaceThe moon represents perhaps the first great paradox of the night sky in all of human history. While its angular size is easy to measure with the unaided eye from any location on Earth, ranging from 29.38 arc-minutes (0.4897°) to 33.53 arc-minutes (0.5588°) as it orbits our world in an ellipse, that doesn’t tell us its physical size. From its angular size alone, the moon could just as easily be close and small as it could be distant and enormous.

But we know a few other things, even relying only on naked-eye observations. We know its phases are caused by its geometric configuration with the sun and Earth. We know that the sun must be farther away (and hence, larger) than the moon from the phenomenon of solar eclipses, where the moon passes in front of the sun, blocking its disk as seen from Earth. And we know it undergoes lunar eclipses, where the sun’s light is blocked from the moon by Earth.

Lunar eclipses provided the first evidence that Earth was round; the shape of the portion of the shadow that falls on the moon during its partial phase is an arc of a circle. In fact, once we measured the radius of Earth (first accomplished in the 3rd century B.C.E.), now known to be 6,371 km, all it takes is one assumption—that the physical size of Earth’s shadow as it falls on the moon is approximately the physical size of Earth—and we can use lunar eclipses to measure both the size of and the distance to the moon!

Simply by knowing Earth’s physical size and measuring the ratios of the angular size of its shadow and the angular size of the moon, we can determine the moon’s physical size relative to Earth. During a lunar eclipse, Earth’s shadow is about 3.5 times larger than the moon, with some slight variations dependent on the moon’s point in its orbit. Simply divide Earth’s radius by your measurement to figure out the moon’s radius!

Even with this primitive method, it’s straightforward to get a measurement for the moon’s radius that’s accurate to within 15% of the actual value: 1,738 km. Now that you’ve determined its physical size and its angular size, geometry alone enables you to determine how far away it is from Earth. A lunar eclipse is coming up on September 28th, and this supermoon eclipse will last for hours. Use the partial phases to measure the size of and distance to the moon, and see how close you can get!

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

2015spet22_moon_en

Image credit: Daniel Munizaga (NOAO South/CTIO EPO), using the Cerro Tololo Inter-American Observatory, of an eight-image sequence of the partial phase of a total lunar eclipse. Click for a larger view.

About NASA Space Place

The goal of the NASA Space Place is “to inform, inspire, and involve children in the excitement of science, technology, and space exploration.” More information is available at their website: http://spaceplace.nasa.gov/

Prepping For International Observe The Moon Night (Sept. 19) And A Total Lunar Eclipse (Sept. 27)

UPDATE: 19 Sept 2015, 5:00 p.m. – Sadly, the weather is not cooperating with us this evening, so our IOMN session downtown in CANCELED. We’ll hope for better conditions during the lunar eclipse next week.

UPDATE: Meetup.com and Facebook Events have been added for both the IOMN (meetup | facebook) and eclipse IOMN (meetup | facebook) sessions.

Greetings fellow astrophiles!

We focus on the Moon this month with one natural event and one “nature-derived” (sounds better than “artificial”) event.

International Observe The Moon Night – Saturday, Sept. 19th, 7 – 9 p.m.

10653395_10204655485772527_7894618305856385299_n

It’s the Moon, so doesn’t much matter where you set up to observe. A snapshot from last year’s CNYO IOMN session in Armory Square (near The MOST and Sound Garden).

International Observe the Moon Night (InOMN) is an annual event that is dedicated to encouraging people to ‘look up’ and take notice of our nearest neighbor, the Moon. From looking at the Moon with a naked eye to using the most sensitive telescope, every year on the same day, people from around the world hold events and activities that celebrate our Moon. On this site, you can find information about an InOMN event near you or register your own event. We encourage everyone to join us in the celebration!

Because the viewing was easier (and the crowd a little easier to find) from close to The MOST last year, we’re going to set up the scopes at (or close to) the very beginning of the south end of the Onondaga Creekwalk (map below, right below The Sound Garden). This spot provides ample parking and a fairly clear view of the Southwest/South/Southeast (certainly enough for lunar viewing) while not being quite as bright as other spots in the vicinity.

2014august28_logo_finalThe 6 day old waxing crescent Moon is a nice compromise of brightness and detail for giving the Moon a good looking at (given the preference to have IOMN on a Saturday night, anyway). Not only will we have a terminator to give us shadows and perceived depth, but we’ll have pleasant views of the many large “seas” on the Moon’s surface – including Mare Tranquillitatis (with the Apollo 11 landing site just on its coast), Fecunditatis, Serenitatis, and Crisium – out in the open for inspection. For those wondering about the timing (besides the whole weekend thing), Full Moon is actually one of the most boring times to observe the Moon. With the Sun’s light beating straight down on the Moon’s surface, we have no shadows to bring out crater depth or mountain height. Most observers agree that the most interesting views are right along the terminator where light and dark meet, so having a nice piece of that to observe makes for a much more visually appealing session.

Total Lunar Eclipse – Sunday, Sept. 27th, 8:11 p.m. to 1:22 a.m. (28th)

NOTE: Bob Piekiel will be hosting a total lunar eclipse session at Baltimore Woods on the 27th. If you want to see the Moon in fine detail through telescopes, this will be an excellent place to be.

Those who’ve been keeping constant track may recognize the eclipse discussion below as a re-post from April, 2014 (Total Lunar Eclipse, Mars Just Past Opposition And A Very Early Observing Event At Baltimore Woods on April 15th), itself followed up by another lunar eclipse post from October, 2014 (CNYO Observing Log: Lunar Eclipse And Syracuse Academy Of Science, 8 October 2014).

And now onto the upcoming total eclipse – and my continued belief that lunar eclipses don’t get the respect they deserve. Yes, solar eclipses are much more exciting and it has been well-documented that people have previously responded very strongly (and not always pleasantly) to solar eclipses. The sudden darkening of the sky and noticeable temperature drop can cause all shades of responses (no pun intended) in people. That said, all we really get (besides a view of the solar corona) is an example of what happens when you put a black disc in front of the Sun. Lunar eclipses, on the other hand, tell us a bit about how the Earth itself interacts with the Sun by how this interaction alters our view of the Moon.

Both solar and lunar eclipses tell us something about the Sun/Earth/Moon relationship. Specifically, we learn that the Sun/Earth orbital plane (the oval made as the Earth goes around the Sun each year) and the Earth/Moon orbital plane (our local oval) are not the same – the Earth/Moon plane is tilted slightly off the Sun/Earth plane by 5.2 degrees (small, but just enough). That is, the Moon spends some time above and some times below the Sun/Earth orbital plane, while sitting right in the plane only two times each orbit (where the two planes intersect). How do we know this? Simple. If the Earth/Moon plane were exactly in the Sun/Earth plane, there would be a total solar eclipse and total lunar eclipse every month because there would be a time each month (New Moon) when the Sun, Moon, and Earth made a straight line (Sun-Moon-Earth = solar eclipse) and a time each month (Full Moon) when the Sun, Earth, and Moon made a straight line (Sun-Earth-Moon = lunar eclipse). As the two planes are slightly off, the New Moon is simply “off the radar” of most people because it can’t be seen during the daytime. The Full Moon, on the other hand, is brilliantly bright most of the time because it only infrequently enters the Earth’s shadow.

The image below shows this very nicely (and it’s always better to find and cite a good image than to have to roll your own). Give it a look for 30 seconds to make sure each of the four cases make sense to you.

2014april10_eclipses_and_planes_small

The Sun/Earth and Earth/Moon orbital planes. Note the top and bottom orientations that are perfect for eclipses (and the left and right that are not). Image taken from www2.astro.psu.edu (from Chaisson & McMillan Publishing). Click for a larger view.

Total solar and lunar eclipses, then, occur on special, but periodic and predictable, occasions when the Moon finds itself exactly in the Sun/Earth plane. When it’s just ever-so-slightly off this plane AND still between the Sun and Earth (or still falls into the Earth’s shadow in the Sun-Earth-Moon arrangement), we get partial eclipses. Just that simple.

2014april10_lunar_io9_18lpa5eiskbbcjpg

What to expect on April 15th (the government’s cashing in on its short wavelength tax!). Image from this article at io9.com.

Perhaps the most striking difference between a solar and lunar eclipse is that a solar eclipse obstructs the disc of the Sun, leaving only a view of its wispy exterior (corona), while a lunar eclipse alters the color of the Moon while still allowing us to see it in its entirety. Those watching the lunar eclipse will see the Moon go from its usual bright grey to orange, then a dark red before reversing the color order. The reason for this dark red coloring is the same reason why our sky is blue – the scattering of light in our atmosphere. Recalling our handy scattering relationship – that scattering (I) is proportional to 1 / wavelength4, we see that shorter wavelengths scatter more than longer wavelengths (because the wavelengths are in the bottom of the proportion, so larger numbers decrease the value of “I”). The image below was taken from one of the great non-wikipedia physics sites (well worth several afternoons to explore), hyperphysics.phy-astr.gsu.edu.

2014april10_bluesky

The scattering relationship. See hyperphysics.phy-astr.gsu.edu/…/blusky.html for much, much more.

We see that shorter wavelength light gets “bounced around” more, while longer wavelength light passes for longer distances unimpeded by interactions with molecules and larger particles (like soot after big volcanic eruptions) in our atmosphere. Light going straight from the Sun hits our atmosphere and gets increasingly scattered as the wavelength gets shorter – blue scatters more than red, so we see the blue strongly when we look up during the day. With the blue light strongly scattered, those people on the edges of where the Sun’s light falls – those just starting or ending their days – see more red light because that wavelength wasn’t as strongly scattered – effectively those at sunrise and sunset get the filtered-out leftovers of the light that those at high noon see as blue. The “lit” side of the world experiences a range of different colors depending on where they are during the day, but all are being illuminated by waves of light from the Sun that left at the same exact time (plus or minus a nanosecond or two).

Because it’s a busy week and the author is feeling lazy, he refers you to the top image of the three-panel image below, showing how the scattering of sunlight in our atmosphere occurs sooner after entry (on average) for blue, a bit later (on average) for green, then a bit later (on average) for yellow, then out to red, some of which is and isn’t scattered (on average).

2014april10_starlight_small

The scattering of light by Earth’s atmosphere (shorter wavelengths scatter sooner). The other two images are placed into context by your reading about extrasolar planetary atmosphere studies. See www.universetoday.com/…-in-blue-light/ for that info.

And so, we know that blue is scattered strongly and red is not. This red light then races to the edges of our illuminated globe and the red light not scattered directly down to Earth or scattered in the opposite direction (out into space right above you) races past Earth at various altered (scattered) angles. During the most complete part of the lunar eclipse, the red color you see is, in fact, the red light that is passing through the edges of our atmosphere at those places experiencing sunrise and sunset (the sunlight performing a “grazing blow” of our atmosphere). As you might guess, if Earth were to lose its atmosphere (but don’t give any of your industrious friends any ideas), our lunar eclipses would appear quite different. Instead of a dark red Moon, we’d simply see a black disc where no stars shone (like placing a quarter at arms length and obscuring anything behind it).