Tag Archives: M27

NASA Night Sky Notes: Spot The Stars Of The Summer Triangle

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. Your tax dollars help promote science! The following article was provided for reprinting by the Night Sky Network in September, 2019.

By David Prosper

September skies are a showcase for the Summer Triangle, its three stars gleaming directly overhead after sunset. The equinox ushers in the official change of seasons on September 23. Jupiter and Saturn maintain their vigil over the southern horizon, but set earlier each evening, while the terrestrial planets remain hidden.

The bright three points of the Summer Triangle are among the first stars you can see after sunset: Deneb, Vega, and Altair.  The Summer Triangle is called an asterism, as it’s not an official constellation, but still a striking group of stars. However, the Triangle is the key to spotting multiple constellations! Its three stars are themselves the brightest in their respective constellations: Deneb, in Cygnus the Swan; Vega, in Lyra the Harp; and Altair, in Aquila the Eagle. That alone would be impressive, but the Summer Triangle also contains two small constellations inside its lines, Vulpecula the Fox and Sagitta the Arrow. There is even another small constellation just outside its borders: diminutive Delphinus the Dolphin. The Summer Triangle is huge!

The equinox occurs on September 23, officially ushering in autumn for folks in the Northern Hemisphere and bringing with it longer nights and shorter days, a change many stargazers appreciate. Right before sunrise on the 23rd, look for Deneb – the Summer Triangle’s last visible point – flickering right above the western horizon, almost as if saying goodbye to summer.

The Summer Triangle region is home to many important astronomical discoveries. Cygnus X-1, the first confirmed black hole, was initially detected here by x-ray equipment on board a sounding rocket launched in 1964. NASA’s Kepler Mission, which revolutionized our understanding of exoplanets, discovered thousands of planet candidates within its initial field of view in Cygnus. The Dumbbell Nebula (M27), the first planetary nebula discovered, was spotted by Charles Messier in the diminutive constellation Vulpecula way back in 1764!

Planet watchers can easily find Jupiter and Saturn shining in the south after sunset, with Jupiter to the right and brighter than Saturn. At the beginning of September, Jupiter sets shortly after midnight, with Saturn following a couple of hours later, around 2:00 am. By month’s end the gas giant duo are setting noticeably earlier: Jupiter sets right before 10:30pm, with Saturn following just after midnight. Thankfully for planet watchers, earlier fall sunsets help these giant worlds remain in view for a bit longer. The terrestrial planets, Mars, Venus, and Mercury, remain hidden in the Sun’s glare for the entire month.

Discover the latest in space science from the NASA missions studying our universe at nasa.gov

Once you spot the Summer Triangle, you can explore the cosmic treasures found in this busy region of the Milky Way. Make sure to “Take a Trip Around the Triangle“ before it sets this fall! Find the full handout at bit.ly/TriangleTrip
This wider view of the area around the Summer Triangle includes another nearby asterism: the Great Square of Pegasus.

The Night Sky Network program supports astronomy clubs across the USA dedicated to astronomy outreach. Visit nightsky.jpl.nasa.gov to find local clubs, events, and more!

CNYO Observing Log: Clark Reservation State Park, 21 August 2015

Greetings fellow astrophiles,

With Perseid Week just behind us, Bob Piekiel and I set up shop for one final Summer 2015 observing session at Clark Reservation. As was mentioned in a Clark Reservation post from last year, it isn’t a great location for heavy-duty amateur astronomers – Syracuse (and its light pollution) lies very close to my hometown of Jamesville (or vice versa, I guess) and even thin cloud cover acts as a dirty mirror to brighten the ground (and sky) around us. For the new observer, however, Clark Reservation is an excellent spot to get one’s feet dewy – it’s close to civilization (and easy to find) and the light pollution wipes out many of the dimmest stars (it probably isn’t far off to say that the sky goes from 2000 to only 400 visible stars thanks to stray city light), making constellation identification significantly easier.

2015august27_clark_lecturestart

Early attendees listening to the first welcome lecture.

The session started slowly enough around 8:00 p.m. with a small group of attendees present for our introductory observing lecture/white light warning/usual canned schtick. It wasn’t until after we hit the 40 people mark that I found out that this session was mentioned in the Post-Standard paper as a Weekend’s Best. As we hit the near-80 people mark, we both turned up the lecturing knob to keep people informed and entertained as the observing lines cycled through our two scopes. The crowd was excellent, interactive, and very patient.

2015august27_clark_halfcrowd

A shot of half the crowd waiting for the ISS.

Every year, I find that some aspect of observing gets a kind of special attention that then becomes part of session dogma (past years being the focus on the hiding of smartphones and flashlights, the very deliberate explanation of how to (and how not to) observe through the scope, and the emphasis on the circumpolar constellations as the best way to get into seasonal constellation identification). The purposes of each of these is, simply, to simplify the session for the attendees (call it a “crash course” in observing). This year, it’s been observation by way of a “hierarchy of observables” (something that Bob and I both have used often). It goes as such:

Early in the evening (including before sunset), non-solar observers have the Moon in all its grandeur (itself possibly the best observable there is for amateur astronomy). While all of the classical planets (Mercury, Venus, Mars, Jupiter, and Saturn) can also be observed, they require a little more time to get to the point of being interesting. Maybe 20 minutes after sunset. By the time that Vega, Arcturus, Deneb, Antares, and Altair are visible (usually coincident with the planets), the most prominent double stars in the sky are visible enough for decent magnification (here, specifically mentioning Albireo in Cygnus and Mizar and Alcor in Ursa Major). Another 20 minutes later, the brightest Messiers are visible – specifically M57, the Ring Nebula in Lyra and M13 in Hercules. 20 minutes later, some of the dimmer Messiers become (just) observable – here, the Andromeda Galaxy (M31 and M32) in Andromeda, and M27, the Dumbbell Nebula in Velpecula. 20 minutes later (so we’re now 80 or so minutes after sunset), the Messier gates flood open and one can begin to make out more objects than can usually be gotten through with a +40 crowd in 2 hours anyway.

Add to this list the ISS, Iridium Flares, random other satellites, a few shooting stars, and some of the detail of the Milky Way inside of Cygnus and down to as much of Sagittarius as the tree line will allow, and you’ve (hopefully) gone a long way to introducing a brand new observer to some of the very best sights available in the nighttime sky (with the above list obviously biased towards the Summer and Fall skies).

To the list above (with only Saturn and Neptune in the planetary observing list), we added at least two meteors (one in the right direction for a Perseid, one not) and a dimmed, by still present, Milky Way band. The lecturing itself didn’t stop for the entire two hours, and we were thankful for the questions that kept us (and others around us) occupied.

With the end of Summer in sight, part of CNYO’s yearly outreach will now include more library lectures and, of course, Bob’s monthly sessions at Baltimore Woods. Stay tuned for event announcements!