Tag Archives: Ngc 3628

CNYO Observing Log: Beaver Lake Nature Center, 2 May 2013

2013may2_beaverlakebanner_v2

Greetings fellow astrophiles,

May 2nd served as the rain date (due to rapidly-overcasting conditions on April 25th) for our first Beaver Lake Nature Center lecture of the year – The Guiding & Wandering Stars – Key Northern Constellations & Planet Observations. On hand to run scopes and engage in lecture duties were the author with a 12.5″ New Moon Telescope Dobsonian, Larry Slosberg with one Meade SCT and Bob Piekiel with another.

The Constellations have been with us for thousands of years, but there are only a few good, clear nights each month to memorize their positions as they slowly move across the sky! This outdoor lecture by the CNY Observers (www.cnyo.org) will briefly describe the history and importance of the Constellations as mythological, agricultural, and navigational guides, then will describe a simple system to begin to learn their relative positions. At the same time, Jupiter and Saturn are on opposite sides of the Southern sky, making excellent targets for binocular and telescope observing. Free and open to the public.

While the week including May 2nd will be known to some as a particularly bad week for maple tree allergies, the nighttime sky stayed quite clear and the bugs eventually froze around us to produce an excellent session. The attending crowd of about 35 served as test subjects for both our two new brochures (How The Night Sky Moves and Guide For New Observers) and our first official completely outdoors (Powerpoint-free) lecture (which, despite astronomy being such a visual hobby, worked will with just the brochure contents). In anticipation of some nighttime brochure reading, I put together some red light flashlights on the cheap locally. For anyone attempting similar, I found a four-pack of Dorcy AAA 6 LED Flashlights at Dicks Sporting Goods for $10. Some very minor surgery is needed to remove the top caps, but conversion to red light flashlights is straightforward with the help of a four-layer stack of red acetate purchased many moons ago from Commercial Art Supply in Syracuse.

406px-EB1711_Armillary_SphereDespite a little confusion about the start time (7:30 or 8:00), everyone had pulled in by 7:45 p.m., so we began the session with a good 30 minutes of physics. The goal of these Beaver Lake lectures is to not only observe objects, but to explain why the sky moves as it does so those trying to learn new constellations will understand what to expect both over the course of a night and over the course of a year. This began at the ground floor – understanding how the Earth moves around the Sun. With the help of an armillary sphere (which holds the Earth at its 23 degree tilt – see the image at left from wikipedia), the Earth’s movement around the Sun was demonstrated, specifically showing that the rotation axis stays pointed the same way as we revolve – thus resulting in Polaris appearing not to move over the course of the year despite the Earth shifting position by 300 million kilometers (2 astronomical units) every 6 months. Knowing that Polaris is always in the same place in the sky (whether it’s daytime or not) leads smoothly into a discussion of the circumpolar constellations and the benefit of learning these six constellations first (for this discussion and some how-to’s, I refer you to the CNYO brochure: Guide For New Observers).

Running a sunset-to-late-night session with a non-cycling crowd has (at least) two distinct advantages. First, the importance of dark adaption and the need to avoid smart phones (or avoid their use around others) can be stressed early in the evening. While enforcing protocols to maintain dark adaption at any kind of public lecture is usually a losing battle, anyone answering a phone did it in a very non-obvious manner, which was most welcome. Second, the mechanics of my Dobsonian telescope and Larry and Bob’s two motorized SCTs could be presented while still visible to attendees. More importantly, the proper observing technique for all could be demonstrated by showing (a) how to approach an eyepiece (I tell people to put their hands behind their back and simply lean into the eyepiece) and (b) just how easy it is to nudge a scope away from its target. Specifically for the Dob, I’m sure anyone who’s brought their scope to a public session has had at least one person lean on or pull closer an eyepiece. I’m pleased to report that, once the observing started, our collective intro to scope workings made my Dob-running life simple with no unplanned re-adjustments (just adjustments of the unmotorized kind).

As stated in a previous post (2013 March 8 – At The Syracuse Inner Harbor), new observers are best introduced to observing with easy objects that don’t require training. Deep, dim, distant galaxies are not useful starters for someone with no background in eyepiece observing. For my part, a good 70 minutes were spent on Jupiter (low in the Western Sky with all four Galilean moons present), Saturn (low in the Eastern Sky and my first view of it this year), Arcturus in Boötes (its shimmering in the sky both with and without magnification was a point of discussion for several near my scope), M13 (the globular cluster in Hercules, which served as a first “way out” object and an example of using the constellations as a “coarse adjustment” for finding Messier and other objects), and the pair Alcor and Mizar in the handle of the Big Dipper/tail of Ursa Major (to show the separation and additional detail that comes with magnification).

With a much smaller crowd around 9:30 p.m., I did treat a few interested parties to some more difficult observing in my scope – The Leo Triplet – after first briefly explaining the mechanics of averted vision. Of the five people who looked, all could make out M65, all could at least tell that something “was there” where M66 rested, and three people could tell that “something else” was there at NGC 3628‘s position. And I did miss a golden opportunity to observe NGC 4565 (my personal favorite) in Coma Berenices.

We closed up shop at 10 p.m., just as Cygnus and Lyra began to peak out over the horizon and announce the approaching return of our Summer Constellations. I am pleased to report that we will be hosting a Summer Session on Thursday, August 8th (with an August 15th rain date) where we will again do a little bit of mechanics and instruction outdoors, followed by Saturn, Venus, and all that our summer view of the Milky Way can provide.

August 8 – Stargazing with CNY Observers & Observing

CNY Observers (CNYO) hosts an introductory lecture to the Night Sky, focusing on planets and other objects observable during August and September.  Part of the lecture will discuss some simple ways to learn the Constellations, while the rest of the lecture will provide details about meteor showers, observing satellites and the ISS, and the ever-expanding description of our own Solar System.  If time and weather permits, some early evening views of Venus and Saturn will be had from the Beaver Lake parking lot.  Free for members; $2 for nonmembers.

CNYO Observing Log: Baltimore Woods, 16 March 2013

2013march16_baltimorewoodsbanner_v2

ABOVE: A 15 sec. exposure from Baltimore Woods. (1) Sirius in Canis Major, (2) Orion, (3) The Hyades (the head of Taurus the Bull), (4) Jupiter, (5) the Pleiades, (6) The Moon.

The sky opened up for a crisp and clear viewing session late in the day after a long spell of heavy cloud cover on Saturday, March 16th. I made it to Baltimore Woods just in time for Bob Piekiel to direct me and my pair of Zhumell 25×100’s to the low-Western Horizon to take in Comet pan-STARRS (C/2011 L4, that is) with a light amber coloring and even a slight vertically-pointing oval that became an obvious tail at low magnification. This view only seemed to get better Sunday night (17th), where the comet was Naked Eye from downtown Syracuse!

A horizon view of pan-STARRS is shown below (above the red asterisk. Canon DS1400 IS Digital Elph, 15 second exposures). Click on the image for a larger view.

2013march16_baltimorewoods_2

A time lapse of pan-STARRS setting below the Western horizon at Baltimore Woods is shown below (starts below the asterisk at left. Canon DS1400 IS Digital Elph, 4x zoom, 15 second exposures). Click on the image for a larger view.

2013march16_baltimorewoods_2

A view through the Zhumell 25×100 binos is below (by way of some fancy camera balancing). Click on the image for a larger view.

2013march16_baltimorewoods_2

spaceweather.com has a summary of the current situation on their website (as of 19 March 2013):

A growing number of people are reporting that they can see Comet Pan-STARRS with the naked eye. Best estimates place the magnitude of the comet at +0.2, about twice as bright as a 1st magnitude star. As the comet moves away from the sun, its visibility is improving. Observing tip: Step outside about an hour after sunset and face west. Pinpoint the comet using binoculars. Once you know where to look, put the optics aside and try some naked-eye observing.

By the time pan-STARRS set below the horizon, the sky was quite dark and extremely transparent. Bob and I proceeded to play for an hour with his 11” SCT, new Meade 5000 super- and ultra- wides (24 mm and 40 mm), and my personal favorite, his Collins Image Intensifier (which does exactly what it describes – increasing the brightness of objects in the eyepiece and, in many cases, making observable a dim object you might otherwise completely pass over without knowing it was there – you can see some example images here: darkerview.com/wordpress/?tag=intensifier).

Besides a thoroughly enjoyable conversation about optics, focal reducers, and new eye candy to look for at NEAF, highlights of the observing session included:

Visible Planets

* Jupiter (just to the right of the Hyades, as Taurus exchanges its otherwise brightest left eye (Aldebaran) with Jupiter as its right eye). Having given Jupiter considerable scope time this year already, we checked it mostly just to confirm it was still there.

In Taurus

* Messier 45 – The Pleiades served as an excellent cluster for testing Bob’s new focal reducer (which, basically, increases the field of view). An excellent image showing what the focal reducer does is shown below (from webcaddy.com.au/astro/f-066fr-pics.htm).

2013march19_focalreducer

In Orion

* Messier 42 – The Orion Nebula (without and without enhancement, with the Collins brightening and increasing the extent of the nebulosity). The Orion Nebula is the brightest and most expansive nebula observable from Earth and it sets earlier every day, so we spent considerable time on it before missing it all Spring and Summer.

In Andromeda

* The Andromeda Galaxy (M31) and Messier 32 – The intensifier brought out the presence of the central core of Andromeda but did not significantly enhance detail (specifically the dust lanes and spaces between the spiral arms that one can see in any eyepiece in dark skies). This was likely due to the presence of the Moon nearby in the sky (which can do a significant number to nebula and galaxy detail even when only present as a sliver), but I did learn some more about the intensifier eyepiece (see below). M32 (one of M31’s satellite galaxies) was also bright but featureless.

In Leo

* Messier 65, Messier 66, and NGC 3628 – All three galaxies in The Leo Triplet were excellent in the intensifier (and in the same field of view) despite the Moon. At the first Inner Harbor session, M65 and M66 were just visible (due to the the light pollution around the site) thanks to Ryan Goodson bringing a 16” New Moon Telescope Dobsonian.

In Gemini

* Messier 35 – an open cluster nearly the size of the full Moon, containing a few bright stars and a tight grouping of dimmer ones. The intensifier has a tendency to “haze” a bit around these tight groupings as the pixels on the CCD chip begin to oversaturate.

In Canis Major

* Messier 41 – While observing this open cluster, the over-saturation of the CCD chip became obvious in the form of perfectly circular discs around each of the brightest stars, making each appear to have a well-defined nebula around it (not that these stars need any kind of image enhancement to see clearly in any scope. As you might guess, brighter star = bigger + brighter disc).

In Perseus

Caldwell 14 – The Double Cluster – in the same way that stereotypical night vision goggles give you only shades (or different intensities) of green, the intensifier sacrifices color for “green intensity.” Accordingly, the reds, oranges, and blues in the Double Cluster that make it such an interesting eyepiece object go away, leaving you with just (well, not just) two dense star clusters. This is the best argument for intensifiers being used as tools for galaxy and nebulae hunting.

In Ursa Major

Messier 81 – NGC 3031, Bode’s Galaxy – An excellent sight in the intensifier despite the crescent Moon (which would otherwise make it nearly featureless).

Messier 82 – NGC 3034, Cigar Galaxy – M81’s gravitational neighbor (with M82 being the smaller neighbor and, therefore, more gravitationally influenced by M81). M82 appears to have two distinct cores in the intensifier (that would make it look like two galaxies about to merge). I attribute this double-core view to the intensifier picking up the massive filamentous structure perpendicular to M82’s galactic plane – but should buy my own intensifier to study it in more detail!).

Messier 97 (Own Nebula) + Messier 108 – Admittedly, Bob and I kept passing M108 while trying to find M97 and failed to recognize it as M108 (faint but pleasant in the intensifier). That said, M97 was a very difficult find despite Bob bringing a GOTO scope and, by the time I confirmed to myself that I had it in the field of view, I was under-impressed with the intensifier view (it was barely an object with averted vision, although some part of this could have been the Moon’s presence).

We closed the session around 9:15 p.m. by returning to the Orion Nebula for one last comparison of the intensifier and the Meade 40 mm.

Lessons for the evening: (1) Don’t assume of comets! And, if you observe, report to the group so others know to also not assume! (2) Just because you’re freezing cold doesn’t mean you should stand 1/2 inch from a portable propane heater. At what feels like cryogenic temperatures, your leg goes from 10 F to 150 F before your nerves notice it.