Tag Archives: Supernova

Free Astronomy Magazine – May-June 2017 Issue Available For Reading And Download

Greetings, fellow astrophiles!

The most recent issue of Free Astronomy Magazine (May-June, 2017) is available for your reading and downloading pleasure at www.astropublishing.com (click the link to go directly to the issue).

Free Astronomy Magazine was featured as the first of a series of articles on great free online content for amateur astronomers (see A Universe Of Free Resources Part 1) and we’ll be keeping track of future publications under the Online Resources category on the CNYO website.

You can find previous Free Astronomy Magazine issues by checking out our Free Astronomy Magazine Category (or look under the Education link in our menu).

For those wanting a quick look at what the issue has to offer, the Table of Contents is reproduced below.

May-June 2017

The web browser-readable version of the issue can be found here:

May-June 2017 – www.astropublishing.com/3FAM2017/

For those who want to jump right to the PDF download (27 MB), Click here: May-June 2017

NASA News Digest: Space Science For 25 July – 14 August 2014

Greetings fellow astrophiles,

The NASA News service provides up-to-date announcements of NASA policy, news events, and space science. A recent selection of space science articles are provided below, including direct links to the full announcements. Those interested in receiving these news announcements directly from NASA can subscribe to their service by sending an email to:

hqnews-request@newsletters.nasa.gov?subject=subscribe

NASA’s Mars Spacecraft Maneuvers to Prepare for Close Comet Flyby

RELEASE 14-201 (Click here for the full article) – 25 July 2014

2014august30_main_sidingspring_version07b-01_2NASA is taking steps to protect its Mars orbiters, while preserving opportunities to gather valuable scientific data, as Comet C/2013 A1 Siding Spring heads toward a close flyby of Mars on Oct. 19.

The comet’s nucleus will miss Mars by about 82,000 miles (132,000 kilometers), shedding material hurtling at about 35 miles (56 kilometers) per second, relative to Mars and Mars-orbiting spacecraft. At that velocity, even the smallest particle — estimated to be about one-fiftieth of an inch (half a millimeter) across — could cause significant damage to a spacecraft.

NASA currently operates two Mars orbiters, with a third on its way and expected to arrive in Martian orbit just a month before the comet flyby. Teams operating the orbiters plan to have all spacecraft positioned on the opposite side of the Red Planet when the comet is most likely to pass by.

For more information about the Mars flyby of comet Siding Spring, visit: mars.nasa.gov/comets/sidingspring/

For more information about NASA’s Mars Exploration Program, visit: www.nasa.gov/mars

NASA’s Long-Lived Mars Opportunity Rover Sets Off-World Driving Record

RELEASE 14-202 (Click here for the full article) – 28 July 2014

2014august30_14_202a_0NASA’s Opportunity Mars rover, which landed on the Red Planet in 2004, now holds the off-Earth roving distance record after accruing 25 miles (40 kilometers) of driving. The previous record was held by the Soviet Union’s Lunokhod 2 rover.

“Opportunity has driven farther than any other wheeled vehicle on another world,” said Mars Exploration Rover Project Manager John Callas, of NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California. “This is so remarkable considering Opportunity was intended to drive about one kilometer and was never designed for distance. But what is really important is not how many miles the rover has racked up, but how much exploration and discovery we have accomplished over that distance.”

For more information about NASA’s Mars rovers Spirit and Opportunity, visit: www.nasa.gov/rovers and marsrovers.jpl.nasa.gov

Follow the project on Twitter at: twitter.com/MarsRovers

On Facebook, visit: www.facebook.com/mars.rovers

An image of Lunokhod 2’s tracks, as imaged by NASA’s LRO, is available online at:
lroc.sese.asu.edu/posts/774

NASA’s Hubble Finds Supernova Star System Linked to Potential “Zombie Star”

RELEASE 14-212 (Click here for the full article) – 6 August 2014

2014august30_14-212_0Using NASA’s Hubble Space Telescope, a team of astronomers has spotted a star system that could have left behind a “zombie star” after an unusually weak supernova explosion.

A supernova typically obliterates the exploding white dwarf, or dying star. On this occasion, scientists believe this faint supernova may have left behind a surviving portion of the dwarf star — a sort of zombie star.

While examining Hubble images taken years before the stellar explosion, astronomers identified a blue companion star feeding energy to a white dwarf, a process that ignited a nuclear reaction and released this weak supernova blast. This supernova, Type Iax, is less common than its brighter cousin, Type Ia. Astronomers have identified more than 30 of these mini-supernovas that may leave behind a surviving white dwarf.

For images and more information about Hubble, visit:
www.nasa.gov/hubble and hubblesite.org/news/2014/32

NASA’s NuSTAR Sees Rare Blurring of Black Hole Light

RELEASE 14-210 (Click here for the full article) – 12 August 2014

2014august30_14-210_0NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR) has captured an extreme and rare event in the regions immediately surrounding a supermassive black hole. A compact source of X-rays that sits near the black hole, called the corona, has moved closer to the black hole over a period of just days.

“The corona recently collapsed in toward the black hole, with the result that the black hole’s intense gravity pulled all the light down onto its surrounding disk, where material is spiraling inward,” said Michael Parker of the Institute of Astronomy in Cambridge, United Kingdom, lead author of a new paper on the findings appearing in the Monthly Notices of the Royal Astronomical Society.

For more information on NuSTAR, visit: www.nasa.gov/nustar

NASA’s Chandra Observatory Searches for Trigger of Nearby Supernova

RELEASE 14-216 (Click here for the full article) – 14 August 2014

2014august30_14-216_0New data from NASA’s Chandra X-ray Observatory offer a glimpse into the environment of a star before it exploded earlier this year, and insight into what triggered one of the closest supernovas witnessed in decades.

The data gathered on the Jan. 21 explosion, a Type Ia supernova, allowed scientists to rule out one possible cause. These supernovas may be triggered when a white dwarf takes on too much mass from its companion star, immersing it in a cloud of gas that produces a significant source of X-rays after the explosion.

Astronomers used NASA’s Swift and Chandra telescopes to search the nearby Messier 82 galaxy, the location of the explosion, for such an X-ray source. However, no source was found, revealing the region around the site of the supernova is relatively devoid of material.

For an additional interactive image, podcast, and video on the findings, visit: chandra.si.edu

For a preprint of the study results in The Astrophysical Journal, visit: arxiv.org/abs/1405.1488

For Chandra images, multimedia and related materials, visit: www.nasa.gov/chandra

AAVSO Writer’s Bureau Digest For 22 April 2014

2013dec20_aavso_logoThe AAVSO Writer’s Bureau, hosted by the American Association of Variable Star Observers (www.aavso.org), is a selective aggregator of high-quality science content for the amateur astronomer. Several astronomy bloggers, science writers, and official astronomy publishers and organizations provide articles free-of-charge for redistribution through the AAVSO-WB. The five most recent Writer’s Bureau posts are presented below with direct links to the full articles on the author’s own website. CNYO thanks the authors and the AAVSO for making these articles available for free to all astronomy groups!

Starbirth in the Neighborhood

C.C. Petersen, The Spacewriter

2014april22__5_M83Galaxies are huge collections of stars, gas, dust, black holes, and planets. The Milky Way is a good example of a spiral galaxy. It also happens to have a bar of gas and dust and stars across its center, and many places where stars are being born. It turns that when astronomers look at other galaxies, particular spiral galaxies (and many colliding galaxies), they also see regions of starbirth.

Hubble Space Telescope has been astronomy’s “go to” machine in space when astronomers want to look at something like a distant galaxy. This Hubble image shows the pinwheel (spiral) galaxy M83, which lies in our southern hemisphere skies in the constellation Hydra. It’s about 15 million light-years away, and, as you can see here, is ablaze with starbirth regions spread across 50,000 light-years of space.

Read the full article at: thespacewriter.com/wp/2014/01/26/starbirth-in-the-neighborhood/

A Cosmic Bubble That’ll Soon Pop. Hard.

Phil Plait, slate.com

2014april22__4_jeffhusted_sharpless2_308Sometimes, I’m pretty happy our planet circles a relatively calm, normal star. Because when I look at stars like EZ Canis Majoris (aka WR 6, HR 2583, HD 50896, and other aliases), I think that things around here could be a lot less conducive for life.

Why? Because this:

Pretty, isn’t it? But the beauty belies a true monster.

This photo was taken by Jeff Husted, an astrophotographer who observers in the western US. It shows the star EZ CMa (for short), the star just left of center of that ethereal glowing bubble of gas. It’s what’s called a Wolf-Rayet star, one of the more terrifying beasts in the galaxy’s menagerie. It’s a star that started out life with more than 40 times the mass of the Sun, which made it super-hot and extraordinarily luminous. Stars like that can be hundreds of thousands of times as bright as the Sun! A planet orbiting it as close as the Earth to the Sun would be cooked to a vapor pretty rapidly.

Read the full article at: www.slate.com/blogs/…cosmic_bubble_from_a_galactic_monster.html

The Final Countdown Before a Supernova

Phil Plait, slate.com

2014april22__3_hst_sbw1I’m sometimes asked what I think the next exploding star in our galaxy will be. Most people expect I’ll say Betelgeuse, the red supergiant marking Orion’s right shoulder.

But Betelgeuse may not go supernova for another million years, which is a long, long time. There are several stars much closer to The End, and I recently learned of a new one: SBW1.

The star is a blue supergiant, a hot, energetic beast probably about 20 or so times the mass of the Sun. Stars like that don’t live long, just a few million years tops. But we know (we think) it’ll explode much sooner than that, because of that ring you see in the Hubble picture above. How does that ring tell us anything? Ah, glad you asked.

Read the full article at: www.slate.com/blogs/…/sbw1_a_star_on_the_verge_of_supernova.html

A Superluminous Supernova

CfA News, Harvard

2014april22__2_su201401Supernovae are the explosive deaths of massive stars. Among the most momentous events in the cosmos, they disburse into space all of the chemical elements that were produced inside their progenitor stars, including most of the elements essential for making planets and life. Astronomers have recognized for decades that there are several different kinds of supernovae, most fundamentally those that originate from a single massive star and those that develop when one member of a pair of binary stars becomes massive by feeding on its neighbor. Other factors like the stellar composition also come into account. Sorting out all these various complications is critical if astronomers want to be able to reliably classify any particular supernovae and thereby infer its intrinsic brightness, and then use its observed brightness as a measure of its distance.

Recent wide-field surveys searching for supernovae have found that the conventional schema for classifying supernovae may be even more complicated than previously thought. A few years ago a new class called superluminous supernovae was found, characterized by their emitting total radiated energies equal to about ten billion suns shining for a year. Some of these new objects were discovered at cosmological distances, helping to cement the notion that new types were being discovered, and further studies have found even more subdivisions, also based among other things on composition. These new superluminous supernovae can be identified and characterized by the particular way their light fades away after the brightness peak, driven in part by the radioactive decay of elements manufactured in the explosions.

Read the full article at: www.cfa.harvard.edu/news/su201401

New Cutoff For Star Sizes

John Bochanski, Sky & Telescope

2014april22__1_Brown_DwarfAstronomers have found a gap between “real” and “failed” stars.

What does the smallest star look like? This question is deceptively difficult to answer. Stars spend most of their lives fusing hydrogen in their cores, a prime time of life called the “main sequence.” As you go down the scale of stellar sizes on this sequence, stars become dimmer, cooler, and less massive. But determining the absolute properties of the smallest stars — their mass, radius, temperature, and overall light output — is challenging for at least three big reasons.

Read the full article at: www.skyandtelescope.com/astronomy-news/new-cutoff-for-star-sizes/

CNYO Observing Log: Baltimore Woods, 27 September 2013

Greetings fellow astrophiles!

The September 27th Baltimore Woods session was notable for several reasons. On the down side, my drive to Marcellus through Fairmount was delayed when a minivan with far too many large dogs in it had one of its automatic windows dropped down to the delight of an ejected dog that bounced off my driver side door (my non-astro thought for the day – if your pets are your children, please use the child safety options built into your very modern vehicle!). On the up side, for the first time since March, a Baltimore Woods session started at 7 p.m. The skies were dark enough to begin seeing the brightest stars with ease and cold enough to freeze out the many bugs that frequent the BW Nature Center.

Attending scopes included Bob Piekiel‘s massive 16″ Meade GOTO (with some included heavy lifting by the two of us to get it set up and torn down), Larry Slosberg’s 12″ New Moon Telescope, and my 12.5″ NMT Dob (herein referred to as “Ruby”). A fourth scope appeared early in the evening with the first attending family, but ended up not getting too much use. Despite being a bit worse for wear, their “retail store” Stratus 60mm refractor scope surprised the owners (and kids) with a good view of a distant cellular tower and a fuzzy but noticeably “half-moon cookie” Venus (whatever description works is fine with me).

2013september27_bw_bobstratus

Bob inspecting the Stratus 60mm.

The final size (25ish) of the crowd (and the number of first-time attendees) dictated the observables for the evening, with all of us sticking mostly to bright, easily identifiable objects. As for our local neighborhood, the good news was that more than half of the planets were out for the evening (counting the views of Earth). The bad news was that Venus and Saturn set early (both due to the time and the high trees along the Western horizon), leaving the very distant Uranus and Neptune as targets for later-night observers.

As has been my standard procedure, I picked one object from my standard list of “kinds of” objects so those at my scope would be sure to get a sampling of the types of objects we amateur astronomers look forward to looking at. My list included:

* (Hopefully) One Planet – From my (scope’s) vantage point, Venus and Saturn were impossible catches behind large trees. Neptune and Uranus were, for the entire viewing session, nestled within the glow of Marcellus (and Syracuse beyond), so I didn’t even bother attempting to find them. Bob, however, had at his disposal a massive GOTO, so the gathered crowd was able to take in at least one of the two distant planets (making them part of the way-less-than-1% of the entire planet who can claim the same).

* One Star – At Bob’s request, I gave special attention to Herschel’s Garnet Star (mu Cephei) in Cepheus. One of the real benefits of magnification through good optics (or long-exposure photography) is the appearance of color in many stars that are otherwise just too slightly colored to be noticeable to Naked Eye observers. While the different colors of the binary star Albireo are generally obvious to most people, the Garnet Star jumped out to everyone through every eyepiece as a very orange star. This red supergiant, affectionately known to some as Erakis, is BIG. Those who have seen the image below in one of our CNYO library lectures…

2013september27_bw_starsizes

The scale of familiar objects in our vicinity (click for the wikipedia version).

Will recognize Mu Cephei as the third star from right (in the “Big Block” 6) in the bottom of the image. Our own Sun peters out in Block 3. If a super race of aliens were to swap out our Sun for the Garnet Star, the outer edge of its plasma would engulf Jupiter and either engulf or roast Saturn. Big. Not only big, but old to boot. Mu Cephei is what is known as a “carbon star,” one that has nearly exhausted its helium (which is produced from all the fusion of hydrogen, which it then exhausted quite some time ago) and is now producing carbon in the star’s core. The near-exhaustion of the star’s fuel means that it’s likely only a few million years from going supernova (somewhere between a finger snap and ringing wine glass in cosmic terms) and is currently identified as a variable star for its subtle and erratically changing brightness.

2013september27_bw_cepheus

Mu Cephei, Cepheus, and surrounding constellations.

As you scour Cepheus some evening, do take the Garnet Star in. If you’re scanning randomly along the bottom of the barn, you can’t miss it!

* One BinaryAlbireo in Cygnus remains an easy favorite. Everyone saw Albireo A as slightly orange or yellow, while Albireo B appeared as slightly to “clearly” blue (clearly a demonstration of the importance of dark adaption and cone sensitivity in the retina). One point of interest is that we’re not entirely sure of Albireo is an optical binary (the two just appear close, but one is much farther away than the other as projected onto our two-dimensional sheet of the Night Sky) or a gravitationally-bound binary pair. If gravitationally-bound, the two are likely far from one another, with the orbital dance occurring over 100,000 or more years.

* One Open Cluster – The Double Cluster (Caldwell 14) in Perseus

* One Globular Cluster – The ever-obvious M13 in Hercules

* One Nebula – The Veil Nebula in Cygnus – typically, this would be considered one of the less-easy objects for a new observer to make out. Through an OII filter, however, the wispy-ness jumps out and new observers, with a little patience, can even see the curvature of each fragment well enough to know where the Veil must be radiating from.

* One Galaxy – M31, The Andromeda Galaxy in Andromeda (and M32 and M110), which were easy for all to spot with a little scope nudging.

As has become the norm recently, I packed up Ruby around 9:30 p.m. and pulled out the Canon T3i and tripod for an extended session of scope-less astrophotography. Three highlights include a very discernible Milky Way, complete with Great Rift, from opposite the direction of Marcellus…

2013september27_bw_mw_1_small

The Milky Way (plus one bright plane and one dim satellite). Click for a larger version.

A dimmer part of the Milky Way that seemed to radiate from (and be washed out by) Marcellus…

2013september27_bw_mw_2_small

The Milky Way and Marcellus (plus a dim plane (dashed line) and dim satellite). Click for a larger version.

And a quite decent view of the varied objects in the vicinity of the constellation Perseus (in the pocket between the two trees and closer to the left tree), including the components of the Double Cluster, NGC 884 and 869 (the fuzzy splotches at the base of the small necklace – 1/3 over from the left edge and 1/4 down the image).

2013september27_bw_perseus_full

Perseus, NGC 884, and NGC 869. Click for a larger version.

I packed it in around 10:00 p.m. in great anticipation! Within the glow of Marcellus lay the Pleiades (M45) and just a hint of its closer cousin the Hyades in the head of Taurus the Bull. These objects have likely served as markers for many millennia that the clear, dark, steady, and uncomfortably cold night skies of winter approach.

NASA Space Place – How To Hunt For Your Very Own Supernova!

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in September, 2013.

By Dr. Ethan Siegel

2013february2_spaceplaceIn our day-to-day lives, stars seem like the most fixed and unchanging of all the night sky objects. Shining relentlessly and constantly for billions of years, it’s only the long-term motion of these individual nuclear furnaces and our own motion through the cosmos that results in the most minute, barely-perceptible changes.

Unless, that is, you’re talking about a star reaching the end of its life. A star like our Sun will burn through all the hydrogen in its core after approximately 10 billion years, after which the core contracts and heats up, and the heavier element helium begins to fuse. About a quarter of all stars are massive enough that they’ll reach this giant stage, but the most massive ones — only about 0.1% of all stars — will continue to fuse leaner elements past carbon, oxygen, neon, magnesium, silicon, sulfur and all the way up to iron, cobalt, and, nickel in their core. For the rare ultra-massive stars that make it this far, their cores become so massive that they’re unstable against gravitational collapse. When they run out of fuel, the core implodes.

The inrushing matter approaches the center of the star, then rebounds and bounces outwards, creating a shockwave that eventually causes what we see as a core-collapse supernova, the most common type of supernova in the Universe! These occur only a few times a century in most galaxies, but because it’s the most massive, hottest, shortest-lived stars that create these core-collapse supernovae, we can increase our odds of finding one by watching the most actively star-forming galaxies very closely. Want to maximize your chances of finding one for yourself? Here’s how.

Pick a galaxy in the process of a major merger, and get to know it. Learn where the foreground stars are, where the apparent bright spots are, what its distinctive features are. If a supernova occurs, it will appear first as a barely perceptible bright spot that wasn’t there before, and it will quickly brighten over a few nights. If you find what appears to be a “new star” in one of these galaxies and it checks out, report it immediately; you just might have discovered a new supernova!

This is one of the few cutting-edge astronomical discoveries well-suited to amateurs; Australian Robert Evans holds the all-time record with 42 (and counting) original supernova discoveries. If you ever find one for yourself, you’ll have seen an exploding star whose light traveled millions of light-years across the Universe right to you, and you’ll be the very first person who’s ever seen it!

Read more about the evolution and ultimate fate of the stars in our universe: science.nasa.gov/astrophysics/focus-areas/how-do-stars-form-and-evolve/.

While you are out looking for supernovas, kids can have a blast finding constellations using the Space Place star finder: spaceplace.nasa.gov/starfinder/.

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

2013sept12_supernovaNGC2207

Caption: SN 2013ai, via its discoverer, Emmanuel Conseil, taken with the Slooh.com robotic telescope just a few days after its emergence in NGC 2207 (top); NASA, ESA and the Hubble Heritage Team (STScI) of the same interacting galaxies prior to the supernova (bottom).

About NASA Space Place

The goal of the NASA Space Place is “to inform, inspire, and involve children in the excitement of science, technology, and space exploration.” More information is available at their website: http://spaceplace.nasa.gov/