Tag Archives: Televue

CNYO Observing Log: International Observe The Moon Night, 6 September 2014

Larry Slosberg and I (Ryan Goodson) arrived at the Onondaga Creekwalk at 7:30 p.m. for the CNY edition of the International Observe The Moon Night. We quickly realized that the Moon would be obstructed by a row of large buildings, making this locale not ideal for the night. We decided to scout other locations.

After a quick walk to The MOST, we found the perfect spot on the same sidewalk shared by both a vacant building under construction and the ever-trendy record store The Sound Garden. Our fear was that foot traffic would be slow, but the Moon was well positioned and slowly traversing its way over The MOST, so we decided this would be the spot.

10653395_10204655485772527_7894618305856385299_n

After a quick set-up (and by quick I mean lightning fast – a couple NMT’s – whadya expect?), our earlier fear of lack-of-traffic was quickly replaced with the anxiety of too many onlookers and not enough scopes! I had set up Dan Williams’ 8” scope, and Larry was equipped with his car dwelling 12”. Thankfully, Dan Williams and Raymond Dague of the Syracuse Astronomical Society made an appearance and aided Larry and I with the part of the outreach I call the splainin’ (that’s okie for explaining). Larry was certainly the star of the show with his use of common objects to put stellar sizes in perspective. Dague and Williams both provided excellent commentary about the Moon and what turned out to be a far bigger hit – Saturn and Mars!

After pointing Williams’ 8” at Saturn, the comments ranged from, “That has to be fake,” to “Get the hell outta here! I’ve never seen anything so incredible!” Since this was a night dedicated to the Moon (albeit nearly full – maybe next year we get a petition making the rounds to move the special occasion to a first quarter date), we had to go back to our lunar companion and get a few oohs and aahs from those views as well.

10653385_10204655486252539_8017853401331274326_n

For the reader wanting the specifics, the scope I had used was an 8” F6.5. The eyepieces used for both the Moon and the planets were a 31mm Nagler (43x magnification), a 12mm Delos (110x magnification) and for the steadiest moments I would use a 2X Celestron Ultima Barlow in conjunction with the Delos to yield that sweet spot of 222x for Saturn. Through the 8” F6.5, this view revealed the ringed planet, the Cassini Division, 4 moons, and subtle surface detail (the surface detail part probably only seen by the more experienced observers in the group). In fact, it was this view that a group of Chinese tourists seemed most excited about. One of the last of the public onlookers to leave had stated that the night had been the most magical she can remember.

The Moon was viewed through both scopes and always filtered. The views were big and bright, with most of the questions relegated to wondering about the maria and larger craters. A young college student said she was excited to finally have tidal lock splained in a way she could understand-thank you Larry Slosberg for relating information in such a candid way!

10659231_10204655485372517_4643818337771398669_n

Before wrapping the event up we pointed toward a number of double stars and talked a bit about the large number of planetary systems being discovered by professionals and amateurs alike. The session closed around 9:45 PM, and we went home energized and ready for the next CNYO event.

CNYO Observing Log: Cherry Springs Star Party, 26 – 29 June 2014

This past June 26 – 29, the Astronomical Society of Harrisburg PA hosted their annual Cherry Springs Star Party (CSSP) at, appropriately, Cherry Springs State Park – the second location to be designated an International Dark Sky Park (wikipedia entry). The park’s about 3.5 hours from Syracuse and, by most metrics, in the middle of nowhere (if you find petrol as you approach the park, get it).

2014july10_cssp_4

Some light and relevant U-Haul reading on the way to CSSP.

There’s quite literally no basic cellular service anywhere after the 3 hour mark (certainly the case for AT&T customers), leaving the park wifi and, of course, AstroGizmos to provide all the connectivity one should otherwise be trying to get away from for a weekend of observing (but definitely couldn’t get away from, so both wifi’s were much appreciated!). And for those wondering “does anyone make those?” – AstroGizmos had available 12 V hair dryers (with varied powering options) for those looking to evaporate eyepiece condensate on dewy nights (I now have mine).

2014july10_cssp_1_small

Cherry Springs State Park – first sign in the park.

Besides the great dark skies, the CSSP also provides CNY clubs a chance to hang out and do nothing for a few days. I set up shop with fellow Kopernik members at the usual Kopernik location (the first left after the “Nova” signpost). My vehicle was extra full this year with a special delivery of New Moon Telescope Dob #17 to Pedro Gomes, known previously on the CNYO Facebook Page as the hardest working observer in Watertown (now at points south).

2014july10_cssp_2_small

A panorama from the Kopernik site. Click for a larger view.

For those roughing it on the site for the entire party, a not-untypical Saturday schedule might involve (1) staying up as late as the caffeine will allow, listening to angered attendees when someone accidentally turns on their car lights (which is less funny when you’ve waited a half-hour for your eyes to fully adjust to the dark, moonless sky), (2) sleeping in until the Sun cooks you in your tent or vehicle, (3) listen to someone (Pedro) tell you about the black bear that passed by his scope and tent the night before (the presence of a few black bears also explained the gunshot fired by camp rangers the night before), (4) going to the vendor tent, (5) making a trip to catering (well, trucks and tent) to wait in line to eat, (6) going back to the vendor tent, (7) attending one or more of the scheduled lectures and checking out the raffle donations (to pass the time until nightfall), (8) vendor tent, (9) raffle!, (10) caffeinate and apply bug spray (although it wasn’t too bad this year), and (11) See 1.

Observing Tip: If you want to make the most of a Star Party, consider taking a break from your usual caffeine intake a few weeks in advance. That first cup of coffee will feel like rocket fuel.

I’m pleased to report that the raffle was a complete success for your’s truly. Not only did I score free admission to the upcoming Kopernik AstroFest in October, but I also managed to walk away with the 8 mm Delos graciously donated to CSSP directly by TeleVue Optics. The company rep, John, and I even had a good exchange Sunday morning (he having done some imaging of the Veil Nebula that night, I having passed around my trusty OIII-filtered 26 mm Nagler to others wanting to observe the same in the Kopernik camp). Admittedly, my bias towards TeleVue eyepieces is strong (and in the official record at Astronomy Technology Today), so the Delos was a very welcome addition (one should not observe Saturn without it!). And it will be present at CNYO events for those wanting to compare and contrast. Many thanks to TeleVue, Kopernik, and all of the CSSP donors (amateur astronomers take their raffle prizes very seriously)!

2014july10_cssp_5_small

Patrick Manley (left) and Pedro Gomes listen as collimation guru Howie Glatter (right) talks shop. Click for a larger view.

I was told that Thursday night was great but very wet. Friday night (my first night there) was a patchwork of clouds and less-than-thrilling seeing conditions. Saturday night was out-and-out fantastic. Going from about 9:30 p.m. to 2:30 a.m., my list included Saturn and Mars, 35 Messiers, 20 NGCs (including my personal favorite, NGC 4565), and a lot of just staring into “nowhere particular” just to enjoy the visual peace and quiet.

Blazar-3c424.3-pic-SDSS-credit-580x485The one object I did want to take a stab at seeing was Blazar 3C 454.3 in Pegasus, having seen the announcement cross the CNYO Twitter Feed in the form of a link to universetoday.com (image at right from the Sloan Digital Sky Survey). Blazars are so bright that astronomers didn’t know until the 1970’s that they weren’t actual stars in our own Milky Way. Blazars are the cores of galaxies where matter is being sucked into a supermassive black hole, releasing in the process jets of energy perpendicular to the plane of the galaxy and right in our direction (so these host galaxies would appear to us like the Whirlpool Galaxy, where we’re seeing the whole galaxy face-on as we stare down its rotation axis).

The blazar in Pegasus recently peaked at around 13th magnitude and has been dimming since. That’s dim. That’s far dimmer than binoculars and small scopes will reveal, but is just fine for a 12” Dobsonian (where 15th magnitude is possible under ideal conditions – which Cherry Springs almost certainly is). While not particularly impressive in any kind of scope, this blazar is noteworthy for being 7 billion light years away. When the photons beaming through that new 8 mm Delos left their home galaxy, the Sun and Earth were still more than 2 billion YEARS away from being ANYTHING. That, to my mind, compensates for the dim.

2014july10_cssp_6_small

The view to the East at Sunset on Saturday night. Click for a larger view.

By 2:45 a.m., the Kopernik crowd had thinned to just Keith Werkman and I. I packed up the scope and pulled out the camera for a few long-exposure shots just in time to see a few randomly-oriented bright meteors (not affiliated with the Boötids Meteor Shower, which peaked the night before) and a Milky Way band bright enough to read by.

2014july10_cssp_7_small

Another view of the Kopernik site at the CSSP. Click for a larger view.

Groggy and sore from our respective sleeping arrangements, the gang began to split just after breakfast and a final clean-up of the grounds. Having now survived my second CSSP with quite a bit of excellent viewing (and viewing tools) to show for it, I and others await next year’s CSSP and next month’s Black Forest Star Party at the same location.

CNYO Feature: Going Big

Thinking of going big? Of course you are, and right you should be. Nothing makes up for aperture under dark skies if it’s deep sky objects you’re after. Some may make an argument that refractors show slightly sharper planetary images, but simple physics says the more light you gather (aka, the bigger the mirror), the brighter the image will be. So, how bright and how big is big enough? Let’s take a look at some practical considerations.

Questions to consider before making a final decision on scope size include: What do I most enjoy viewing? Do I observe more at, or away from, my home? How much weight can I comfortably lift? What eyepieces do I currently use? Can I locate deep sky objects by reading a map, or do I depend on computers to point me where I need to go? And finally, do I mind having lines of people waiting to look through my scope, or would I rather observe alone?

The Basics

If you’re a deep sky aficionado, then a big scope will reveal more detail on the faint fuzzies, period. A scope’s light gathering capability is determined by the size of its primary mirror in the case of reflecting telescopes, or its primary lens in the case of refracting telescopes. And you don’t have to double in size to double in light gathering capability. Remember, the area of a circle is π (pi) multiplied by the square of its radius (πr2). With that in mind, here’s a quick reference table of increased light gathering with a number of mirror sizes, each compared to a 4″ telescope:

Mirror Size
Increase in light gathering over a 4″ mirror
Limiting Magnitude*
8″
4x
14.7
10″
6x
15.2
12″
9x
15.6
16″
16x
16.3
20″
25x
16.7
24″
36x
17.1

*Limiting Magnitude – This estimate is based on good seeing, magnitude 6 skies, a 6mm dilated pupil, and 40x per inch of aperture. 40x per inch of aperture requires a well-figured primary mirror. For more information on limiting magnitude, see www.cruxis.com/scope/limitingmagnitude.htm

So, What Does That Mean At The Eyepiece?

The first step is to understand the above table, yet that alone doesn’t tell the whole story. Low contrast objects require not only dark skies and decent transparency, but also aperture. Think about M51, the Whirlpool Galaxy. Under dark skies and pristine conditions, an 8″ telescope will reveal a hint of the spiral arms with averted vision and high scrutiny. Through a 12″ under the same conditions, the arms are easy with direct vision. Through a 16″, knots in the arms can be made out. Through a 20″, the knots are much brighter and M51 begins to look like a black and white photo. Through a 24″, it’s possible to begin to make out faint coloring in the spiral arms, and the core of the galaxy is so bright, one wonders if it’s going to ruin their night vision!

Nebulae, globular clusters and any of the 109 Messier objects are perfect targets for large telescopes. I have found that a 12″ delivers color on the brightest of nebulae, and the color gets easier to see and more vibrant as the telescope size goes up. On globular clusters, an 8″ will resolve M13 and M3, while a 12″ will resolve most of the rest of the Messiers. With a 16″, all of the Messier globs are easily resolved, as well as many of the NGC’s. With a 20+”, you start loosing count of resolved globs!

Planets

Who can resist a peak at Saturn or Jupiter? Well, once again, aperture rules.

As a rule, as the primary mirror increases in size, the ability to discern detail increases. To fully recognize the potential of the large scope, a finely figured primary mirror is necessary. A great amount of discussion has occurred regarding smaller refractors and their reputation to outperform larger Newtonians. This mustn’t always be the case, however, and it would be a serious error to believe the superior view through a refractor is constant, impervious to variables in design, optics and weather. Those in the pro-refractor camp often claim their allegiance is due to the inherent design inferiority of a Newtonian. Nothing could be further from the truth.

A large mirror, such as is found in some Newtonians, must not only be properly supported from underneath, but also on its edge as it is being tilted within the telescope. Many a Newtonian builder neglects to provide the appropriate support. A consequence of an improperly designed mirror cell or edge support system will be any of several detail and contrast robbing aberrations, most notably different orders of spherical aberration and astigmatism.

An important aspect of large aperture Dobsonians (Dobs) is that the larger primary mirror requires far more time to cool down than a smaller refractor. Most of the older large Newtonians out there compound this because it was once thought that the mirror had to be relatively thick, otherwise aberrations would be introduced by the mirror cell (we now have finite computer analysis programs that will plot a perfect mirror cell of any size – most specifically David Lewis’ PLOP program). Thanks to the research of Bryan Greer (research article published in the May and June issue of Sky and Telescope) and others, we now have a better understanding of the ways larger optics shed heat. One of the more straightforward discoveries of this research was that the reason larger mirrors take so long to cool is mostly due to their thickness and not overall diameter. So if we choose the thinner mirror for faster cool down, we again shift our attention to the mirror cell. A thin mirror that is not supported properly from underneath will cause a slight deformation in the surface figure, which in turn causes light rays reflecting off the mirror’s surface to not come into focus at a single point. A star test would then readily reveal different orders of spherical aberration, degrading the view at the eyepiece. Now consider the mirror’s edge support. A sling is historically used to support the edge of large primary mirrors, often made out of Kevlar or metal banding. Through the work of Nils Olif Carlin (www.cruxis.com), we now understand that as much care should be given to choosing the proper edge support as goes into the design of the rest of the mirror cell. If this part of the mirror cell is neglected, you once again will experience different optical aberrations at the eyepiece as the telescope is moved from horizon to zenith.

Another point to consider is that bad atmospheric seeing can cause one to believe that a large telescope is performing poorly on the planets. It is true that a larger mirror will seemingly amplify poor seeing conditions, but patience at the eyepiece (waiting for the seeing to settle momentarily and for the planetary image to “pop”) will once again prove the larger mirror to outperform the smaller one.

So, let us review: A big telescope with a thin mirror, excellent mirror cell and edge support, built with an active cooling system (fans to provide air motion within the mirror box) and a night of good seeing – Viola! It’s a recipe for a night of planetary viewing that will leave you and other observers arguing about the spokes in Saturn’s rings!

Portability

I often hear of an amateur astronomer selling his scope because it’s just too much of a hassle to get out and observe with. The size and weight limit varies from astronomer to astronomer, so observers must carefully consider for themselves what may be too heavy or too much hassle to result in pleasurable observing.

An 8″ is usually considered the “biggest of the small”, while a 12″ is often referred to as the “smallest of the big.” I agree with this sentiment. An 8″ – 12″ tube-style Dobsonian is a one-person job and both easily fit in a mid-sized sedan, but the 12″ may push the weight limits of some. The 8″ scopes on the market today are around 65 lbs fully assembled, while the 12″ telescopes weigh in around 100 lbs. If you plan to use an equatorial mount, make sure to factor in an additional 30 lbs or so above the overall weight (and prepare to spend an extra 20 minutes or so setting up). Forget about 14″ – 20″ tube-style telescopes – portability is key and unless you have a small observatory, an equatorial mount is probably not feasible due to the sheer size and weight it encompasses.

Truss-style telescope weights vary significantly from vendor to vendor. One telescope I can be sure of knowing the weights of is one that I build, a New Moon Telescope. A fully assembled 16″ NMT is just under 100 lbs, the heaviest component you would lift weighing in at 60 lbs, and the collapsed scope readily fits in the same mid-sized sedan that would cart a smaller tube-style scope around. A 20″ is 134 lbs, the heaviest component weighing slightly over 80 lbs, and this is the size at which to start relying on detachable wheelbarrow handles to maneuver it. A 24″ would weigh roughly 165 lbs and a 27″ almost 200 lbs. When going this big, remember to reflect on what type of SUV, truck, or trailer you might like to own, because car-hauling is doubtful. Any of the scopes through a 20″ can be stored in a bedroom or living area (and the 8″ and 12″ even in a closet), fully assembled, should you choose to showcase them as pieces of furniture. From the 20″ and up, consider utilizing a storage shed, garage, or an observatory (should you be so fortunate!). Keep in mind, telescopes 20″ and larger necessitate a large car in which to travel, or ideally a truck, trailer or SUV, so if you’re an apartment dweller with no access to a storage unit, you’ll want to stick on the small side. Likewise, if you have your own observatory in your backyard, the sky is the limit on the size of scope you could choose, as portability will not be a factor.

Eyepiece Preference

One factor that may be overlooked when considering the purchase of a new telescope is the choice of eyepieces. The longer the overall focal length of the scope, the smaller the field of view (and so the higher the magnification), so the limited field of view of Plossl eyepieces quickly become frustrating when you start using telescopes in the 20″ range. Another factor about your eyepiece collection is the capability of the eyepiece for correcting coma. Coma is an aberration you get with any Newtonian, in which the stars in the eyepiece start looking like tadpoles as they near the edge of the field of view. Everyone seems to have a different tolerance level of coma, but there are ways to correct for it. The easiest – buy all high-end eyepieces. TeleVue, Pentax, Explore Scientific, and a few others are building eyepieces that contain coma-correcting elements (and of course FAR wider fields of view than the typical Plossl) and these usually perform well down to a focal ratio of F4.5. Faster than F4.5, you may need to invest in a specific coma-correcting eyepiece such as TeleVue’s Paracorr (I cannot recommend these enough). All of this being said, you could observe happily for the rest of your life with three high end eyepieces and a barlow lens with as large a telescope as you wish to endeavor (my opinion only of course!).

Further Considerations

Familiarity with the skies will also likely determine the size of the scope to purchase (or build, of course). The obvious determining factor here is cost. If you are brand new to astronomy and can’t tell the difference between Cygnus and Sagittarius, you should probably wait to invest in a $15,000.00 set-up, even if you can afford it now. A modest familiarity of the sky is needed when using any telescope, and wisdom has shown that beginners typically have an easier time with a simple pair of binoculars or a small telescope. In fact, many of the 8″ tube-style telescopes on the market right now are under $400, and perfect for a beginner. Purchasing a telescope like this will give you the time under the stars you need to learn the constellations and familiarize yourself with pointing, moving and using a telescope. If you are a more advanced amateur, however, bigger scopes and better optics start to make more sense. You have probably amassed a few decent eyepieces and know your way around the sky well enough to invest in a larger scope that will open the skies to you exponentially. Even if you aren’t a star hopping pro yet, there are digital encoders available and GOTO capabilities that can be added to even the largest of telescopes. Think of it this way: with a good NGC and IC map (or encoders), you could go to a dark site every night for the next 20 years and upon each visit discover a new deep sky object! And with some of the more obscure objects, you may be one of only a handful of people that have EVER seen said object through a telescope! And remember – the bigger the mirror, the brighter and more picturesque the object is going to look. And of course there’s always that chance of discovering a comet…

Finally, big scopes draw crowds, and crowds are the future of amateur astronomy. If you can point at a few nebulae, open clusters, or galaxies and give a 60 second presentation on what you are looking at, you will quite possibly change the lives and perspectives of countless people. So that’s my final “big scope” pitch: Big scopes change lives!

2013june25_ryangoodson_bioRyan Goodson is the owner of New Moon Telescopes (www.newmoontelescopes.com), manufacturer of custom Dobsonian telescopes. He is a member of several CNY astronomy clubs, hosts observing sessions from his dark skies in West Monroe, NY, and lectures regionally on telescope building. He can be reached at ryan@newmoontelescopes.com.

The “Stuventory” – Stu Forster Astronomy Equipment For Sale

* Updated List As Of * 5 August 2015 *

sas_stu_forster_photogallery stu
Dr. Stuart Forster (1956-2011, obit) was a long-time Syracuse Astronomical Society member, former president, secretary, contributing author, scope builder, astrophotographer extraordinaire, host to several of the Messier Marathons that marked the beginning of the SAS observing year, multi-lecturer at past meetings and Summer Seminars, and a true amateur astronomer’s astronomer whose knowledge of observing and equipment was as expansive as the summertime Milky Way.

Ryan Goodson and Damian Allis are coordinating the sale of much of Stu’s astronomy equipment, which is extensive. The list below contains all of the equipment thus catalogued that is not already sold and will be (1) added to as new equipment is catalogued and (2) modified as items are sold. Details about the equipment and sale are as follows:

1. Those in CNY and beyond who knew Stu know that all of the equipment is in fine condition and working order. For optics, we will try to provide as much detail about lenses and mirrors as possible, including providing additional images if you want to see things first.

2. Electronics are more complicated. Stu had been an avid astrophotographer for many years and has in his inventory CCD and related equipment spanning 2 decades (from phone plugs to 9-pin serial plugs to USB). Ryan and Damian do not have a way to test this equipment beforehand. We will do our best to answer questions and, when something can clearly be shown not to work, will provide refunds upon equipment return.

3. Generally, if you want more information or other pictures, please ask by sending an email to stuventory@cnyo.org. Ryan and/or Damian will get back to you as soon as possible.

4. “As long as you’re sorting stuff, did Stu have X?” – We regret that our organization of the equipment does not provide us time or constant access to the equipment we are selling. Everything we have in condition to sell is on this page.

5. Shipping – We plan to ship everything by USPS Priority, which means our expected shipping fee will be in the $6 to $12 range (using USPS Priority Boxes packed as reasonably as possible to minimize the number of boxes if you’re buying multiple items). Tracking numbers will be sent as soon as available. Everything will be boxed and wrapped in bubble wrap. If you like, we can make different shipping arrangements, but we ask that you NOT REQUEST CHEAPER SHIPPING OPTIONS. We simply have too much equipment to be buying custom boxes and keeping track of the different shipping options at the Post Office register. We believe this to be a fair request given the very reasonable prices for these items.

6. There is NO HOLDING policy unless you are driving to Syracuse to look at/purchase equipment. If you want to inspect equipment in person, please schedule as promptly as you can.

7. You Can Help – If you know something about a component that you think would help someone else out, please send your information along to stuventory@cnyo.org (referencing the item number). We assume that people looking to purchase will know what something is (or, at least, “know the difference”) but will happily take additional info and add it.

8. Payment can be made by personal check (to Damian Allis) or PayPal. Please contact Damian at stuventory@cnyo.org prior to purchasing.

9. “Your descriptions are a little… brief” – We are specifically using the first sale of items to reduce the amount of equipment that then needs to be researched. If you were sent here by another amateur astronomer, chanced are good you already know what the equipment is and don’t need us to tell you (minus additional info, of course)!

10. Click on an image for a larger version (and please ignore the numbers written down in the images. The Item Numbers on this page are the official way to reference equipment).

Item #

Picture

Description

Price


7


1 available
unlabeled
4″ Plate
$10.00


23








Celestron C90 1000mm f/11 In Case
Orion FlexiSHIELD
SN: 97415
Made In USA
$100.00

51


SBIG
Part: 1007052432
Remote Guide Head
$300.00


56


Williams Optics
Illuminated finder scope with case and mount
$40.00


68



Unlabeled 9×50 mm Finder Scope
No front or back covers
$40.00


77


2″ Focuser $15.00


78


2″ Focuser $15.00


79


2″ Focuser $15.00


84



2″ Focuser $70.00


85



2″ Focuser $20.00


86



2″ Focuser $50.00


87





2″ Focuser $75.00


105

ST-4/RF components (looking for full SBIG retro-focuser) $10.00


106

Orion 9×60 mm illuminated finder scope (tested – works fine) $80.00


107

Orion Sky Wizard 2 components (potentially unaffiliated components therein) PRICE PENDING


108


Astrovid StellaCam II CCD Imaging System (appears to be complete) $550.00


118


BETAX No. 5 Series II Velostigmat No. 497553; Wollensak 12″ F/4.5
Slight ding on the rim (visible at 10 o’clock on the bottom image)
$450.00


120

Meade #62 T-Adapter (Japan) in box $20.00


121


CCD Technology CCD-10 Imager (complete?) with manuals and disks
Model No: CCD-1011231
Serial No: 174
PRICE PENDING


126


130 F6 FF2
Felted Field Flattener (in box)
$250.00