Tag Archives: Voyager 2

NASA Night Sky Notes: Find Strange Uranus In Aries

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. Your tax dollars help promote science! The following article was provided for reprinting by the Night Sky Network in October, 2019.

By David Prosper

Most of the planets in our solar system are bright and easily spotted in our night skies. The exceptions are the ice giant planets: Uranus and Neptune. These worlds are so distant and dim that binoculars or telescopes are almost always needed to see them. A great time to search for Uranus is during its opposition on October 28, since the planet is up almost the entire night and at its brightest for the year.

The bright three points of the Summer Triangle are among the first stars you can see after sunset: Deneb, Vega, and Altair.  The Summer Triangle is called an asterism, as it’s not an official constellation, but still a striking group of stars. However, the Triangle is the key to spotting multiple constellations! Its three stars are themselves the brightest in their respective constellations: Deneb, in Cygnus the Swan; Vega, in Lyra the Harp; and Altair, in Aquila the Eagle. That alone would be impressive, but the Summer Triangle also contains two small constellations inside its lines, Vulpecula the Fox and Sagitta the Arrow. There is even another small constellation just outside its borders: diminutive Delphinus the Dolphin. The Summer Triangle is huge!

Search for Uranus in the space beneath the stars of Aries the Ram and above Cetus the Whale. These constellations are found west of more prominent Taurus the Bull and Pleiades star cluster. You can also use the Moon as a guide! Uranus will be just a few degrees north of the Moon the night of October 14, close enough to fit both objects into the same binocular field of view.  However, it will be much easier to see dim Uranus by moving the bright Moon just out of sight. If you’re using a telescope, zoom in as much as possible once you find Uranus; 100x magnification and greater will reveal its small greenish disc, while background stars will remain points.

Try this observing trick from a dark sky location. Find Uranus with your telescope or binoculars, then look with your unaided eyes at the patch of sky where your equipment is aimed. Do you see a faint star where Uranus should be? That’s not a star; you’re actually seeing Uranus with your naked eye! The ice giant is just bright enough near opposition – magnitude 5.7 – to be visible to observers under clear dark skies. It’s easier to see this ghostly planet unaided after first using an instrument to spot it, sort of like “training wheels” for your eyes. Try this technique with other objects as you observe, and you’ll be amazed at what your eyes can pick out.

By the way, you’ve spotted the first planet discovered in the modern era! William Herschel discovered Uranus via telescope in 1781, and Johan Bode confirmed its status as a planet two years later. NASA’s Voyager 2 is the only spacecraft to visit this strange world, with a brief flyby in 1986. It revealed a strange, severely tilted planetary system possessing faint dark rings, dozens of moons, and eerily featureless cloud tops. Subsequent observations of Uranus from powerful telescopes like Hubble and Keck showed its blank face was temporary, as powerful storms were spotted, caused by dramatic seasonal changes during its 84-year orbit. Uranus’s wildly variable seasons result from a massive collision billions of years ago that tipped the planet to its side.

Discover more about NASA’s current and future missions of exploration of the distant solar system and beyond at nasa.gov

The path of Uranus in October is indicated by an arrow; its position on October 14 is circled. The wide dashed circle approximates the field of view from binoculars or a finderscope. Image created with assistance from Stellarium.
Composite images taken of Uranus in 2012 and 2014 by the Hubble Space Telescope, showcasing its rings and auroras. More at bit.ly/uranusauroras  Credit: ESA/Hubble & NASA, L. Lamy / Observatoire de Paris

The Night Sky Network program supports astronomy clubs across the USA dedicated to astronomy outreach. Visit nightsky.jpl.nasa.gov to find local clubs, events, and more!

NASA Night Sky Notes: Chill Out: Spot An Ice Giant In August

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. Your tax dollars help promote science! The following article was provided for reprinting by the Night Sky Network in August, 2019.

By David Prosper

Is the summer heat getting to you? Cool off overnight while spotting one of the solar system’s ice giants: Neptune! It’s the perfect way to commemorate the 30th anniversary of Voyager 2’s flyby.

Neptune is too dim to see with your unaided eye so you’ll need a telescope to find it. Neptune is at opposition in September, but its brightness and apparent size won’t change dramatically as it’s so distant; the planet is usually just under 8th magnitude and 4.5 billion kilometers away. You can see Neptune with binoculars but a telescope is recommended if you want to discern its disc; the distant world reveals a very small but discernible disc at high magnification. Neptune currently appears in Aquarius, a constellation lacking in bright stars, which adds difficulty to pinpointing its exact location. Fortunately, the Moon travels past Neptune the night of August 16th, passing less than six degrees apart (or about 12 Moon widths) at their closest. If the Moon’s glare overwhelms Neptune’s dim light, you can still use the its location that evening to mark the general area to search on a darker night. Another Neptune-spotting tip: Draw an imaginary line from bright southern star Fomalhaut up to the Great Square of Pegasus, then mark a point roughly in the middle and search there, in the eastern edge of Aquarius. If you spot a blue-ish star, swap your telescope’s eyepiece to zoom in as much as possible. Is the suspect blue “star” now a tiny disc, while the surrounding stars remain points of white light? You’ve found Neptune!

Neptune and Uranus are ice giant planets. These worlds are larger than terrestrial worlds like Earth but smaller than gas giants like Jupiter. Neptune’s atmosphere contains hydrogen and helium like a gas giant, but also methane, which gives it a striking blue color. The “ice” in “ice giant” refers to the mix of ammonia, methane, and water that makes up most of Neptune’s mass, located in the planet’s large, dense, hot mantle. This mantle surrounds an Earth-size rocky core. Neptune possesses a faint ring system and 13 confirmed moons. NASA’s Voyager 2 mission made a very close flyby on August 25, 1989. It revealed a dynamic, stormy world streaked by the fastest winds in the solar system, their ferocity fueled by the planet’s surprisingly strong internal heating. Triton, Neptune’s largest moon, was discovered to be geologically active, with cryovolcanoes erupting nitrogen gas and dust dotting its surface, and a mottled “cantaloupe” terrain made up of hard water ice. Triton is similar to Pluto in size and composition, and orbits Neptune in the opposite direction of the planet’s rotation, unlike every other large moon in the solar system. These clues lead scientists to conclude that this unusual moon is likely a captured Kuiper Belt object.

Discover more about Voyager 2, along with all of NASA’s past, present, and future missions, at nasa.gov

Clockwise from top left: Neptune and the Great Dark Spot traced by white clouds; Neptune’s rings; Triton and its famed icy cantaloupe surface; close of up Triton’s surface, with dark streaks indicating possible cyrovolcano activity. Find more images and science from Voyager 2’s flyby at bit.ly/NeptuneVoyager2 Image Credit: NASA/JPL
Finder chart for Neptune. This is a simulated view through 10×50 binoculars (10x magnification). Please note that the sizes of stars in this chart indicate their brightness, not their actual size. Moon image courtesy NASA Scientific Visualization Studio; chart created with assistance from Stellarium.

The Night Sky Network program supports astronomy clubs across the USA dedicated to astronomy outreach. Visit nightsky.jpl.nasa.gov to find local clubs, events, and more!

NASA Space Place – Snowy Worlds Beyond Earth

Poster’s Note: One of the many under-appreciated aspects of NASA is the extent to which it publishes quality science content for children and Ph.D.’s alike. NASA Space Place has been providing general audience articles for quite some time that are freely available for download and republishing. Your tax dollars help promote science! The following article was provided for reprinting in December, 2017.

The Space Place article format has changed recently, including more embedded images. To simplify the posting process, a PDF version of the article is provided below, with a snippet of the article reproduced below it.

Download as PDF: Snowy Worlds Beyond Earth

By Linda Hermans-Killiam

2013february2_spaceplace

There are many places on Earth where it snows, but did you know it snows on other worlds, too? Here are just a few of the places where you might find snow beyond Earth:

A Moon of Saturn: Enceladus

Saturn’s moon, Enceladus, has geysers that shoot water vapor out into space. There it freezes and falls back to the surface as snow. Some of the ice also escapes Enceladus to become part of Saturn’s rings. The water vapor comes from a heated ocean which lies beneath the moon’s icy surface. (Jupiter’s moon Europa is also an icy world with a liquid ocean below the frozen surface.) All of this ice and snow make Enceladus one of the brightest objects in our solar system.

Caption: Enceladus as viewed from NASA’s Cassini spacecraft. Credit: NASA

Want to learn more about weather on other planets? Check out NASA Space Place: spaceplace.nasa.gov/planet-weather

This article was provided by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

About NASA Space Place

With articles, activities, crafts, games, and lesson plans, NASA Space Place encourages everyone to get excited about science and technology. Visit spaceplace.nasa.gov (facebook|twitter) to explore space and Earth science!

IOTA Announcement – Occultation By Neptune’s Moon Triton – 5 October 2017

Greetings, fellow astrophiles!

The following recently came across the ASRAS email list from ASRAS and IOTA member Brad Timerson. If you’ve the gear for it, this is an excellent chance to contribute to some far-out science.

There will be an occultation of a 12.5-mag. star by Neptune’s large satellite Triton the early evening of October 5th (just before 8pm EDT) that will be visible from east of the Appalachian Mountains. It’s the brightest star to be occulted by Triton since the Voyager flyby showed that the satellite has a substantial atmosphere with interesting dark plumes. The occultation will allow us to learn more about the atmosphere, and its variation with altitude and latitude. Sofia plans to fly over the Atlantic, to try to catch the central flash, where Triton’s whole atmosphere will focus/amplify the star’s light, probing deeper parts of the atmosphere. This might also be observed from Florida, but observations anywhere from the East Coast area are sought, to sample a wide range of latitudes of Triton’s atmosphere. Details of the occultation are available at MIT’s Web site for the event at hubble.mit.edu/prediction.html.

The central time for the Rochester area is within several seconds of 7:55:40 pm EDT on October 5th. For an observer near the center of the path, the event could last as long as 3 minutes. Because the Rochester area is north of that path, any occultation or atmospheric dimming would likely last some fraction of that time. You should plan to record the event for about 10 minutes before and after the time shown here.

A main challenge of the event will be to record Triton and the target star with a good signal, preferably with clear separation between 8th-mag. Neptune less than a quarter arc minute away. You will need good scale to separate the objects well enough. More observing tips are given on the MIT web site. The target star is about a magnitude brighter than Triton.

Telescopes as small as 8″ Newtonians will show the target star. (see included image from a European observer) For occultation work, we don’t need to “see” the occulting body (Triton in this case), just the object being occulted. Low light and/or integrating video cameras are best for this observation. However, standard astronomical cameras operated in a mode so as to produce images as quickly as possible will also work. Testing ahead of time to determine the correct exposure to just barely detect Triton should be done. This is to insure that the light from nearby Neptune doesn’t overwhelm that of the nearby moon and star at the time of the event.

Target star, Neptune, and Triton.

I plan on using my 10″ Meade LX200GPS at either f/6.3 (focal reducer) or at the normal f/10 prime focus. I will be using a Watec 120N+ low light video camera and integrating for 64 or 128 frames (2 seconds and 4 seconds). I’m still experimenting and might even need longer integration times.

Triton occults 4UC 410-143659, 5 October 2017 – visible regions from Earth.

Everyone with suitable equipment is encouraged to try this event. And I would appreciate it if this message is forwarded to any nearby universities that might have the ability to observe this event. If individual images are taken (instead of video) the exact time for each exposure is required (don’t depend on the computer’s internal clock. Use a GPS-based time). For analysis, it may be possible to measure the light level on individual images or the images can be combined into a video and measuring software used on the video.

Please contact me (EMAIL) for additional information or to submit observations.

NASA News Two-Fer – Jupiter’s (Smaller) Great Red Spot & A Color-Full Hubble Deep Field

NASA’s Hubble Shows Jupiter’s Great Red Spot is Smaller than Ever Measured

From NASA News: RELEASE: 14-135 – 15 May 2014

Jupiter’s trademark Great Red Spot — a swirling anti-cyclonic storm larger than Earth — has shrunk to its smallest size ever measured.

14-135-jupiter2_0

According to Amy Simon of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, recent NASA Hubble Space Telescope observations confirm the Great Red Spot now is approximately 10,250 miles across. Astronomers have followed this downsizing since the 1930s. 

Historic observations as far back as the late 1800s gauged the storm to be as large as 25,500 miles on its long axis.  NASA Voyager 1 and Voyager 2 flybys of Jupiter in 1979 measured it to be 14,500 miles across. In 1995, a Hubble photo showed the long axis of the spot at an estimated 13,020 miles across. And in a 2009 photo, it was measured at 11,130 miles across.

Beginning in 2012, amateur observations revealed a noticeable increase in the rate at which the spot is shrinking — by 580 miles per year — changing its shape from an oval to a circle.

“In our new observations it is apparent very small eddies are feeding into the storm,” said Simon. “We hypothesized these may be responsible for the accelerated change by altering the internal dynamics and energy of the Great Red Spot.”

Simon’s team plans to study the motions of the small eddies and the internal dynamics of the storm to determine whether these eddies can feed or sap momentum entering the upwelling vortex, resulting in this yet unexplained shrinkage.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency.  Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington.

For images and more information about Hubble, visit www.nasa.gov/hubble

J.D. Harrington
, Headquarters, Washington
, 
j.d.harrington@nasa.gov
Donna Weaver / Ray Villard, 
Space Telescope Science Institute, Baltimore
, 
villard@stsci.edu

Hubble Team Unveils Most Colorful View of Universe Captured by Space Telescope

From NASA News: RELEASE: 14-151 – 3 June 2014

Astronomers using NASA’s Hubble Space Telescope have assembled a comprehensive picture of the evolving universe – among the most colorful deep space images ever captured by the 24-year-old telescope.

14-151-hubble_2

Researchers say the image, in new study called the Ultraviolet Coverage of the Hubble Ultra Deep Field, provides the missing link in star formation. The Hubble Ultra Deep Field 2014 image is a composite of separate exposures taken in 2003 to 2012 with Hubble’s Advanced Camera for Surveys and Wide Field Camera 3.

Astronomers previously studied the Hubble Ultra Deep Field (HUDF) in visible and near-infrared light in a series of images captured from 2003 to 2009. The HUDF shows a small section of space in the southern-hemisphere constellation Fornax. Now, using ultraviolet light, astronomers have combined the full range of colors available to Hubble, stretching all the way from ultraviolet to near-infrared light. The resulting image — made from 841 orbits of telescope viewing time — contains approximately 10,000 galaxies, extending back in time to within a few hundred million years of the big bang.

Prior to the Ultraviolet Coverage of the Hubble Ultra Deep Field study of the universe, astronomers were in a curious position. Missions such as NASA’s Galaxy Evolution Explorer (GALEX) observatory, which operated from 2003 to 2013, provided significant knowledge of star formation in nearby galaxies. Using Hubble’s near-infrared capability, researchers also studied star birth in the most distant galaxies, which appear to us in their most primitive stages due to the significant amount of time required for the light of distant stars to travel into a visible range. But for the period in between, when most of the stars in the universe were born — a distance extending from about 5 to 10 billion light-years — they did not have enough data.

“The lack of information from ultraviolet light made studying galaxies in the HUDF like trying to understand the history of families without knowing about the grade-school children,” said principal investigator Harry Teplitz of Caltech in Pasadena, California. “The addition of the ultraviolet fills in this missing range.”

Ultraviolet light comes from the hottest, largest and youngest stars. By observing at these wavelengths, researchers get a direct look at which galaxies are forming stars and where the stars are forming within those galaxies.

Studying the ultraviolet images of galaxies in this intermediate time period enables astronomers to understand how galaxies grew in size by forming small collections of very hot stars. Because Earth’s atmosphere filters most ultraviolet light, this work can only be accomplished with a space-based telescope.

“Ultraviolet surveys like this one using the unique capability of Hubble are incredibly important in planning for NASA’s James Webb Space Telescope,” said team member Dr. Rogier Windhorst of Arizona State University in Tempe. “Hubble provides an invaluable ultraviolet light dataset that researchers will need to combine with infrared data from Webb. This is the first really deep ultraviolet image to show the power of that combination.”

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington.

For Hubble Ultra Deep Field 2014 images and more information about Hubble, visit hubblesite.org/news/2014/27 and www.nasa.gov/hubble

J.D. Harrington
, Headquarters, Washington
, 
j.d.harrington@nasa.gov
Ann Jenkins / Ray Villard, 
Space Telescope Science Institute, Baltimore
, 
jenkins@stsci.edu / villard@stsci.edu