Tag Archives: Cak

CNYO Observing Log: Baltimore Woods Solar Session, 22 February 2014

Greetings fellow astrophiles!

After a rather unimpressive nighttime session the night before (because of cloud cover, that it), Bob Piekiel’s Saturday afternoon Solar Session at Baltimore Woods most definitely impressed the +20 attending observers. Bob brought the proverbial “kitchen sink” of personal solar equipment, including a Coronado SolarMax 90 CaK Solar Telescope, a SolarMax II 90 H-alpha Telescope, and a small refractor with a clip-on Baader filter.

2014march22_solar_observers_full

Observers around the Coronado scopes. Click for a larger view.

As discussed in the CNYO brochure A Guide For Solar Observing, we have to use filters to observe the Sun safely. Anyone who’s looked directly at the Sun can attest to the fact that it is very difficult on the eyes (and unless you need to sneeze, why would you do that anyway?). Under magnification, this major discomfort turns into instant and permanent damage to your retina as that very bright light is concentrated in the optics into a sharp beam of considerable burning power. A video of Bob demonstrating this at the previous Solar Observing Session in August is included below.

The three scopes make the Sun observable either by reflecting nearly all of the light (Baader) or by only letting a small amount of a very specific (or narrow) wavelength in (CaK, H-alpha). The views you get through the three different filters are shown below.

2013sept20_bwsolar_7

The Sun in Baader, CaK, and H-alpha filters.

Baader – knocks down the Sun’s brightness by +99.99% across all wavelengths, making it excellent for looking at Sunspots (which are slightly darker than the rest of the surface normally, so dimming the brightness uniformly reveals them as dark spots).

CaK – lets through a very specific line in the calcium spectrum. You only observe the light from the relatively few calcium ions in the Sun’s atmosphere, providing you excellent surface detail (much more than the Baader filters do, but at the cost of less definition in the sunspot features because of all of the additional detail).

H-alpha – lets through a very specific line in the spectrum of the most abundant element in the Sun – Hydrogen. These filters provide surface detail, but are prized more for their ability to observe prominences along the Sun’s edge.

The views on this very clear day were all excellent despite the wind gusts that scattered the Sun blocks around. In the downtime between attendees, I managed to capture two images with my iPhone. The first (less interesting) one is of a prominence in the bottom of the eyepiece in a very over-exposed image:

2014march22_solar_Halpha_small

The Sun in H-alpha through a Coronado with an iPhone. Click for a larger view.

The second one is much more interesting. The image of the Sun through the CaK filter is a rich aqua blue. Something about either the glass or the detector in the iPhone produced the light pink/purple image below, which shows all of the detail one might observe in the Baader filter (but missing any additional surface detail that the CaK filter provides to someone observing without a smartphone).

2014march22_solar_cak_small

The Sun in CaK through a Coronado with an iPhone (better). Click for a larger view.

If you’ve not had the chance to observe our closest star in detail, consider attending a future solar session!

CNYO Observing Log: Baltimore Woods Solar Session, 24 August 2013

2013sept20_bwsolar_2

The gathered crowd at Baltimore Woods.

Greetings fellow astrophiles!

As CNY completes a remarkable span of bright days and clear nights around this year’s Harvest Moon, we finally catch up on our observing logs with a recap of Baltimore Wood’s Solar Session held on an equally bright and clear August 24th.

Despite its importance as the primary reason we and this Solar System are here at all, the Sun often gets neglected by some amateur astronomers who opt out of expensive solar equipment in favor of expensive deep sky equipment. The Sun, like all stars, is a seemingly simple ball of light that reveals great complexity depending on what you use to observe it. Some filters knock down all but 0.001%(ish) of the Sun’s light to provide great Sunspot detail, while other filters let only very specific wavelengths of light through – these filters then providing insights into the surface structure of the Sun based on the excitation of specific atoms on the Sun’s surface or in its corona.

2013sept20_bwsolar_5

An observer at a Coronado H-alpha scope.

Despite its close proximity and constant activity, the Sun is just like any other astronomical object – patience is the key to appreciating the view. At low magnification and over only a few minutes, Sunspots and prominences appear to drift slowly, if at all, in the field of view. Changing to high magnification reveals dynamic views around Sunspots as they undulate or merge with other spots, with changes that are apparent to trained eyes occurring over many seconds. Observers with good memories can return to their scopes over several minutes to see very obvious changes to large prominences. While the differences may be subtle to the eye, they are anything but subtle on the Sun. Keeping in mind that 107 Earths fit across the diameter of the Sun, seeing changes to large prominence over the course of minutes means that plasma on the Sun’s surface is racing at dizzying speeds. The drama only seems slow from our safe distance.

2013sept20_bwsolar_3

The gathered scopes (and gathering observers).

The two hour session at Baltimore Woods provided ample time to sample both the range of filters and the range of timescales, thanks primarily to the ever well-equipped Bob Piekiel and his Baader, CaK, and H-alpha scopes. To this list of equipment was added Larry Slosberg and his Baader-filtered New Moon Telescope 12″ Dobsonian (the big primary mirror of the session), then myself with a Coronado PST (H-alpha). And speaking of filters (and taken from CNYO’s A Guide For Solar Observing brochure)…

2013sept20_bwsolar_1

A solar projecting scope (left) and Larry Slosberg’s Baader’ed NMT Dob.

Baader Filter – The Baader (“Bah-der”) filter works by reflecting 99.999% of all of the incoming light (almost a mirror), leaving you with a pale yellow disk. You’ll see no prominences or fine surface detail, but Baader filters are excellent for observing sunspots.

CaK (Calcium K-line) – The CaK filter lets through a wavelength corresponding to the 393.4 nm Ca K-line transition (you see it as violet). These filters provide excellent surface detail.

H-alpha (Hydrogen-alpha) – This filter lets through a hydrogen electronic transition corresponding to a wavelength of 656.28 nm (you see it as a rich red). H-alpha filters are excellent for prominences and good for surface detail.

2013sept20_bwsolar_7

The Sun through different filters (see above).

Thanks to the SOHO (Solar And Heliospheric Observatory) satellite and its website, it is easy to find the Sun’s snapshot on August 24th to see exactly what we were looking at, complete with a week’s worth of images from the days before to see how the positions of Sunspots changed as the Sun’s plasma rotated about its axis (the final image in yellow is the view from the 24th).

2013sept20_bwsolar_8

The week before the solar session (images from NASA/SOHO).

Technical details aside, the session was an excellent one, with approximately 30 people enjoying many views of the Sun and all the solar details Bob, Larry, and I could remember. Of specific note was a prominence that started small at the beginning of the session but grew to contain a clear, dark hole more than one Earth diameter wide over only an hour’s time. The fun wasn’t restricted to scope observers, either. With filtered binoculars and simple Baader glasses, the dimmed ball of light itself was just as interesting a target.

2013sept20_bwsolar_6

The unmagnified (and nearly unmagnified) view of the Sun through Baader glasses.

While I didn’t hear it mentioned, it is worth noting that the unmagnified (but filtered) Sun appears to be about the same diameter as the unmagnified (and unfiltered) Moon – a point of no small significance during Solar Eclipses. And as the Moon is slipping away from us at a rate of 1.5 inches per year, the Solar Eclipse is also (very, very slowly) becoming a thing of the past in favor of what will become Lunar Transits. All the more reason why it’s a great time to be observing!

I leave you with the most informative 30 seconds on the website (so far). To demonstrate the dangers of observing the Sun without some kind of filter, Bob and Larry set to work reproducing the fabled ship-burning apparatus of Archimedes (also of Syracuse) by burning one sheet of paper and one dark leaf at low magnification. As Bob explains, this same burning would occur on your retina without something to greatly knock down the Sun’s brightness. I even found myself jumping rather anxiously at one intrepid observer trying to look through the eyepiece of Bob’s projecting scope. Solar safety (and eye safety in general) is no joke!

It’s as informative and definitive a video on solar safety as you’ll find on youtube, so feel free to pass the link along to any and all.

CNYO Brochure – A Guide For Solar Observing

Greetings fellow astrophiles!

In preparation for upcoming 2013 lecture and observing sessions, we have put together instructional brochures to help introduce the Night Sky to attendees. The third of these, entitled “A Guide For Solar Observing,” addresses our solar observing sessions and is provided below in PDF format. This brochure will be available at our combined lecture/observing sessions, but feel free to bring your own paper copy (or the PDF on a tablet – but have red acetate ready!).

Download: A Guide For Solar Observing (v6)

NOTE: These brochures are made better by your input. If you find a problem, have a question, or have a suggestion (bearing in mind these are being kept to one two-sided piece of paper), please contact CNYO at info@cnyo.org.

NOTE 2: We’d like to thank the great solar photographer Alfred Tan for the use of his solar image in this brochure. For a regular feed of his stellar (pun intended) solar views from Singapore, we encourage you to subscribe to his twitter feed at: twitter.com/yltansg.

2013may1_htnsm_pg1

2013may1_htnsm_pg1

A Guide For Solar Observing

Solar Safety: Read Me First!

“NEVER Look At The Sun Through ANY Eyepiece Without Protection!”

Pre-Observing Observing Tips

“The Sun is a blindingly bright object all by itself – and your observing session has you constantly looking in its direction!”

Sun Cross Section – 697,000 km Radius

“Radiative Zone: 348,000 km thick, energy from the core is passed through as photons (light) – thousands of years for light to pass through it from the core!”

The Solar System To Scale

“The solar diameter in “planets” is listed.”

More Information About The Sun

“The Sun is the reason why we’re here!”

And Just Why Is The Sky Blue?

“At sunrise and sunset, most of the blue light has been scattered by air molecules, so more of the Sun’s longer wavelength light (red and orange) makes it to our eyes (“R”).”

What You’ll Observe On The Sun

“The savvy (or lucky) observer may see a plane (1), a satellite, a planet (“transit” of Venus (2) or Mercury), or the International Space Station (3).”

About The Sun (History & Future)

“The Sun is a spectral type G2V star in the Orion Arm (Orion Spur) of the Milky Way, some 25,000 light years from the Milky Way’s center and, on average, 8 light minutes away from Earth.”

What You’ll See Through Solar Filters

“All other filters work by picking out a single wavelength (shade of one color) from the entire visible spectrum (ROYGBIV – red, orange, etc.), allowing only that color to pass through to your eye.”